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Activation and Discovery of Earth-Abundant Metal Catalysts 

Using Sodium tert-Butoxide 

Jamie H. Docherty, Jingying Peng, Andrew Dominey, Stephen P. Thomas 

 

Abstract 

Catalysis enables the advancement of society by underpinning modern chemical manufacture, 

academic discovery, materials science and pharmaceutical innovation. The future of catalysis lies 

in first-row, low toxicity, inexpensive, earth-abundant metals, which one day will supplant 

precious metals. Iron and cobalt catalysts are emerging as potential precious metal alternatives 

for alkene and alkyne hydrofunctionalisation reactions. However, these require the use of air- 

and moisture-sensitive catalysts and reagents, which limits both adoption by the non-expert as 

well as applicability, particularly in industrial settings. Here we report a simple method for the 

use of earth-abundant metal catalysts by general activation with sodium tert-butoxide. Using only 

air- and moisture-stable reagents and catalysts, both known and, significantly, novel catalytic 

activity have been successfully achieved. This activation method allows for the easy use of earth-

abundant metals, including; iron, cobalt, nickel and manganese, and represents a generic 

platform for the discovery, application and commercialisation of non-precious metal catalysis. 

Introduction 

Earth-abundant metal catalysis is key to the sustainable future of chemical synthesis and manufacturing. 

Despite this, precious metal catalysts remain the go-to for both industry and academia. Several reductive 

strategies have been developed to enable state-of-the-art earth-abundant metal catalysis, however the 

majority of these rely on the use of air- and moisture-sensitive pre-catalysts (Figure 1, a)1-8 or reagents 

(Figure 1, b)9-22 which are challenging to handle, store and transport, and thus hinder widespread 

adoption of these otherwise powerful methods. In the ideal scenario, all reagents and pre-catalysts 

would be air- and moisture-stable solids that are easily handled, and applicable in large-scale processes 

with minimal associated hazards. With this in mind, we questioned whether a non-organometallic 

reagent could serve as a pre-catalyst activator, greatly simplifying low-oxidation state non-precious 
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metal catalysis. This paper describes what promises to be a significant step along that road; the universal 

activation of first-row transition metal pre-catalysts using sodium tert-butoxide (Figure 1, c).  

 

Figure 1 |  Activation strategies for iron and cobalt pre-catalysts. a, Typical routes to generate catalytically active 

iron(0) and cobalt(I) catalysts. b, Analogous iron(II) and cobalt(II) complexes are bench-stable surrogates for these low-

oxidation state species, which are ‘activated’ using external organometallic reagents or reducing metals as in situ reductants. 

c, Organometallic-free in situ pre-catalyst activation for olefin hydroboration and hydrosilylation using first-row transition 

metals. 

In an effort to discover a practical pre-catalyst activation method we first targeted iron-catalysed 

hydroboration as there are established benchmarks using both a state-of-the-art isolated ‘Fe(0)’ catalyst9 

and an organometallic activation method18. After testing several reagent classes, metal alkoxide salts 

proved to be exceptionally efficient activators (See SI, Table S1). An important series of control 

reactions established that the combination of iron(II) pre-catalyst and sodium tert-butoxide was 
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necessary for any catalytic activity. Stoichiometric quantities of alkoxide salt have been previously used 

to activate B2(Pin)2 and transfer B(Pin) to iron(II) chloride, but not to trigger low oxidation-state 

catalysis or a general reductive catalysis platform19. From a practicality perspective it is key to note that 

these reactions were conducted using reagents as supplied from commercial vendors, without 

purification, even after extended storage in air, and using a single straightforward activation protocol. 

Results and Discussion 

The generality of any synthetic protocol is essential for widespread adoption. Therefore it was important 

to assess if the NaOtBu activation could be applied to a range of pre-catalyst classes (Table 1). Chirik 

has reported the use of iron(0) bis(imino)pyridine complexes as catalysts for the hydroboration of 

alkenes, where the key iron(0) species is prepared by sodium-mercury amalgam reduction of the iron(II) 

precursor9. NaOtBu activation of the bench-stable iron(II) pre-catalyst EtBIPFeCl2 gave the linear 

alkylboronic ester product in excellent yield (>95%) with complete control of regioselectivity, and, 

importantly, equalling the reactivity of the isolated iron(0) manifold (Table 1, entry 1a) and surpassing 

that using an organometallic reagent (Table 1, entry 1b). Ethyl magnesium bromide (EtMgBr) has also 

been used for the in situ activation of the iron(II) pre-catalyst EtBIPFeCl2. Activation, using NaOtBu 

again gave equal reactivity to the organometallic activator with excellent yield and regioselectivity 

achieved in the hydroboration of 4-phenyl-1-butene (Table 1, entry 2). Huang reported the catalytic 

activity of an iron(II) pincer complex, tBuPNNFeCl2, in combination with NaBHEt3 as the activator for 

the anti-Markovnikov hydroboration of alkenes11. Using this iron(II) pre-catalyst and NaOtBu, in place 

of NaBHEt3, again gave the linear alkylboronic ester in excellent yield, with exclusive regioselectivity 

and equal reactivity to that using NaBHEt3 (87%, Table 1, entry 3). Ritter has previously used 

(imino)pyridine iron(II) dichloride pre-catalysts for the 1,4-hydroboration of 1,3-dienes using activated 

magnesium as the activator22. We further exemplified our activation method by successful application 

to 6 (imino)pyridine iron(II) chloride pre-catalysts (see SI, Table S3). Using NaOtBu, the pre-catalyst, 

iPrIPFeCl2, loading could be reduced to 1 mol% (from cf. 4 mol%) and the 1,4-hydroboration products 

of myrcene, a naturally occurring terpene, could be synthesised in high yield (93%), on gram-scale, and 

with equal regioselectivity to that previously reported (Table 1, entry 4).  
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Table 1| Iron- and Cobalt-catalysed Hydroboration and Hydrosilylation of Alkenes 

 

   Previously Reported This Work 

Entry pre-Catalyst Substrate Activator Yield (%) Yield (%)a 

Alkene Hydroboration      

1a 
EtBIPFeCl2 1-Octene 

Na(Hg)9 >98 
>95 

1b NaBHEt3
9 47 

2 EtBIPFeCl2  4-Ph-1-butene EtMgBr18 90 91 

3 tBuPNNFeCl2  1-Octene NaBHEt3
11 90 87 

4 iPrIPFeCl2 Myrcene Mg*21 92 (18:82) 93b  (20:80) 

5 iPrPNNCoCl2  1-Octene NaBHEt3
12 >99 >95 

6 MesBIPCoCl2 1-Octene Co(I)Me5 >98 >95 

7 TerpyCoCl2
 1-Octene Co(I)Alkyl6 87 (59:41) >95  (93:7) 

8 (S)-iPrIPO α-Me-Styrene NaBHEt3
16 85 (97% ee) >95  (98% ee) 

Alkene Hydrosilylation      

9 EtBIPFeCl2 
 1-Octene Na(Hg)27 >98 94c 

10 iPrPNNHFeBr2 1-Octene NaBHEt3
14 90 5 

11 tBuMeIPFeCl2 Myrcene 
1) ArLi,  

2) tBuMeIP28 
91 (95:5) 88d   (92:8) 

12 TerpyCoCl2 1-Octene - - 68e   (93:7) 

13 EtBIPNiCl2  1-Octene - - 48e 

14 EtBIPMnBr2  1-Octene - - 60e,f 

aReaction conditions: Alkene (0.4 mmol), HBPin (0.44 mmol) or PhSiH3 (0.48 mmol), [Fe] (1 mol%), NaOtBu (2 mol%), THF (0.5 
mL), 25°C, 60 minutes. Yield determined by 1H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as an 
internal standard. Regioselectivities are reported in parenthesis as a ratio of linear:branched isomers. b0.99 g product 
isolated. c8 mmol scale, neat. d1.06 g product isolated. eUsing PhSiH3. fUsing 2 mol% [Mn] and 4 mol% NaOtBu. 

 

With the successful activation of over 10 iron pre-catalysts, we were curious whether the NaOtBu 

activation could be applied to other earth-abundant metals24. Chirik has shown that MesBIPCo(I)Me is a 
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highly efficient pre-catalyst for alkene hydroboration5, and similarly Huang reported the hydroboration 

of alkenes using a cobalt(II)-pincer complex, iPrPNNCoCl2 , in combination with NaBHEt3 as the 

activator12. Remarkably, NaOtBu successfully facilitated pre-catalyst activation for both structurally 

unique cobalt(II) pre-catalysts, iPrPNNCoCl2 and MesBIPCoCl2, to give the alkyl boronic ester in equal 

yield to that reported previously (>95%) and with complete control of regioselectivity in both cases 

(Table 1, entries 5,6). Significantly, the activation method was extended to the activation of an 

enantiopure C1-symmetric iminopyridine-oxazoline cobalt(II) pre-catalyst iPrIPOCoCl2, which enabled 

the hydroboration of α-methylstyrene in excellent yield (95%) and enantioselectivity (98% ee, Table 1, 

entry 8), once again equalling the reported reactivity using an organometallic activator16. 

Having successfully developed a practical activation method for alkene hydroboration using different 

ligand structures and metals, we decided to investigate the generality of this method with respect to 

other reaction classes. Alkene hydrosilylation is one of the largest industrial processes currently in 

operation25. Principally these reactions are carried-out using well-established platinum catalysts, and it 

is estimated that the global silicones industry consumes ca. 5.6 metric tons of platinum annually26. As 

a consequence, several new earth-abundant metal catalysts have emerged for alkene 

hydrosilylation20,27,28.  

 

We began by testing the catalytic activity of a range of iron(II) pre-catalysts, in combination with 1-

octene and silanes that were compatible with previous methods involving organometallic activators20. 

We quickly found success; a range of bis(imino)pyridine iron(II) pre-catalysts, BIPFeCl2, with varying 

steric environments were compatible (see SI, Table S5), and we could use EtBIPFeCl2 to catalyse the 

hydrosilylation of 1-octene with triethoxysilane to give the silylated product in excellent yield (94%) 

with exclusive linear regioselectivity (Table 1, entry 9). Again, both the high yield and regioselectivity 

matched that of the analogous state-of-the-art Fe(0) complex27. The catalyst scope for alkene 

hydrosilylation was assessed by application of the activation method to a selection of pre-catalysts with 

literature-established low oxidation-state catalytic activity (Table 1, entries 9-11). Ritter reported the 

iron-catalysed 1,4-hydrosilylation of 1,3-dienes using an (imino)pyridine iron(0) species that was 
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formed by a ligand-induced reductive elimination (Csp
2-Csp

2, bond forming) from a sensitive aryl-ligated 

iron(II) complex28. We therefore applied our novel activation method to the analogous (imino)pyridine 

iron(II) dichloride pre-catalysts (see SI, Table S3). Using NaOtBu, the 1,4-hydrosilylation of myrcene 

was achieved on gram-scale in high yield (88%), and with equal regioselectivity to that previously 

reported (Table 1, entry 11).  

 

We recognised that if NaOtBu could be used for the activation of both iron(II) and cobalt(II) pre-

catalysts, then the activation of a wide range of traditionally synthetically challenging catalyst systems 

may also be possible. Specifically, our activation method could be used to discover novel catalytic 

reaction manifolds. Remarkably, we observed lead reactivity from the outset. The cobalt complex 

TerpyCoCl2, derived from the widely available terpyridine ligand, showed good hydrosilylation activity 

(Table 1, entry 12). To our surprise, we were unable to find literature precedent for hydrosilylation 

activity using any analogous terpyridine-cobalt complex. We next targeted nickel(II) and manganese(II) 

pre-catalysts as there are very limited examples of alkene hydrofunctionalisation reactions with these 

metals29-31. Formation of EtBIPNiCl2 and EtBIPMnCl2 followed by application of our NaOtBu activation 

method led to the discovery of two entirely novel catalytic manifolds (Table 1, entries 13 & 14). In both 

cases, successful hydrosilylation to give the anti-Markovnikov silane product was achieved with 

complete regiocontrol in good yields. To the best of our knowledge, this is the first example of a 

manganese-catalysed alkene hydrosilylation using a manganese(II) pre-catalyst and the first example 

of hydrosilylation using a bis(imino)pyridine nickel species. These results illustrate the efficacy of the 

NaOtBu activation method; not for only the simplification of established methodologies, but also for 

the discovery of new catalytic processes. 

 

Importantly, we were able to apply the NaOtBu activation to both iron and cobalt pre-catalysts for 

hydroboration and hydrosilylation of a series of functionalised substrates without detriment to catalyst 

activity (Figure 2). Carbonyl functionalities including ester 1a, ketone 1b and indole-containing ketone 

1d underwent chemoselective alkene hydroboration using MesBIPCoCl2. Sulfonamide 1c reacted 
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efficiently without S-N bond cleavage or reduction, and aldimine 1e was well tolerated using these 

catalyst activation conditions. Styrene 1f and derivatives bearing potentially sensitive acetoxy- 1g, 

chloro- 1h and even bromo-substituents 1i reacted efficiently to give the expected products 2f-2i in high 

yields and without detrimental side reactions, such as dehalogenation. Additionally, the iron pre-catalyst 

EtBIPFeCl2 could be used for the hydroboration of internal alkyne 1g, to give (Z)-alkenylboronic ester 

2g in good yield. Furthermore, alkene hydrosilylation using the same catalyst, EtBIPFeCl2, was 

successful for a number of functionalised alkenes, tolerating fluoro- 1m, trifluromethyl- 1l and free 

amine 1o groups. We were also able to utilise our activation method to discover the switchable 

stereoselective hydrosilylation of 1-octyne to give the (E)- or (Z)-alkenylsilane, 2m and 2n, simply by 

exchanging the metal from Co to Fe, respectively. This wide functional group tolerance, even on base-

sensitive substrates, demonstrates the extensive applicability of this activation method, and one that 

should aid the general progression of base-metal catalysis. 
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Figure 2| Iron- and cobalt-catalysed hydroboration and hydrosilylation using NaOtBu as a pre-catalyst activator. Compatibility of iron- 

and cobalt-catalysts for alkene and alkyne hydroboration (2a-2k) and hydrosilylation (2l-2q). Yields determined by 1H NMR of the crude 

reaction mixture using 1,3,5-trimethoxybenzene as an internal standard, and Isolated yields are reported in parenthesis. Pre-catalyst used: 

[Fe] = 
EtBIPFeCl2, [Co] = MesBIPCoCl2, [Co]b = iPrPNNCoCl2 (see supporting information for experimental details). aYield of isolated product 

following oxidative work-up. 
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Isolated low-oxidation state formal iron(0) complexes have been shown to offer catalytic activity that 

surpasses that of conventional platinium-catalysts for alkene hydrosilylation27. Therefore, it was 

important to assess the effectiveness of our activation method for the generation of active catalysts in 

industrially relevant situations. We targeted the hydrosilylation of 1-octene with triethoxysilane, a 

commercially relevant silane, as there was a comparable example for this using an analogous ‘iron(0)’ 

complex. Using NaOtBu and EtBIPFeCl2, we were able to achieve equal reactivity to the state-of-the-

art complex, {[EtBIPFe(N2)]2(µ2-N2)}, with even lower catalyst loadings than had previously been 

reported (Figure 3). 

 

Figure 3|    Gram-scale hydrosilylation using a ppm quantity of iron (pre-)catalyst – state-of-the-art iron(0) 

reactivity compared to NaOtBu activation method.  
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Figure 4|    a Proposed pre-catalyst activation pathway, by formation of boron ‘ate’ species 3 or silicon ‘ate’ 4. b 

1,4-Hydrovinylation of myrcene, using an iminopyridine-iron pre-catalyst activated by sub-stoichiometric quantities of 

phenylsilane and sodium tert-butoxide. c Alkene hydrogenation by in-situ generated active catalysts using silicon ‘ate’ 4 

reduction. d Alkene [2π+2π] cycloaddition, previously accessed using sensitive low-oxidation state pre-catalysts, enabled by 

in-situ formation of active species using silicon ‘ate’ 4.  
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Mechanistically, the NaOtBu activation proceeds by reaction of the alkoxide with the boronic ester or 

silane to form an ‘ate’ species which activates the metal pre-catalyst by, presumably, hydride transfer 

and reductive elimination. Stoichiometric reactions of NaOtBu and HBPin produced the boron ‘ate’ 

complex 3 (see SI)32. Similarly reaction of phenylsilane (PhSiH3) with NaOtBu resulted in the 

observation of a penta-coordinate silicon ‘ate’ species 4. Addition of this mixture to the iron pre-

catalyst, EtBIPFeCl2, resulted in the formation a mixture of paramagnetic iron species which 

demonstrated high catalytic reactivity (see SI for experimental details). Given that we could access an 

active catalyst using 4, we realised that either: a) boron ‘ate’ complex 3, b) silicon ‘ate’ complex 4, or 

alternatively c) substoichiometric quantities of silane or borane and tert-butoxide could potentially be 

used as general pre-catalyst activators to enable reactions outwith hydroboration and hydrosilylation. 

Therefore, we targeted hydrovinylation33, hydrogenation2,17 and alkene [2π+2π] cycloaddition 

reactions34,35 in an effort to demonstrate general accessibility to low oxidation-state catalyst manifolds.  

Reaction of myrcene with styrene using the in situ generated catalyst, from BnTMSIPFeCl2, produced the 

anticipated 1,4-hydrovinylation products in excellent yield and regioselectivty when using either HBPin 

or PhSiH3 (Fig. 4b). Additionally, we used 4 as an in situ activator for a selection of iron and cobalt 

pre-catalysts which enabled alkene hydrogenation in high yield (Fig. 4c). Similarly, iPrBIPFeCl2 and 

iPrBIPCoCl2 could be activated using 4, to catalyse the intramolecular [2π+2π] cycloaddition reaction 

which was previously only reported using isolated low oxidation-state (Fe0 and CoI) pre-catalysts (Fig. 

4d).  

Conclusions 

In summary, an easily handled, air- and moisture-stable alkoxide salt could be used for the activation 

of a wide-range of non-precious metal pre-catalysts. State-of-the-art low oxidation-state iron- and 

cobalt-catalysed manifolds, previously only accessible using strict air/moisture-free techniques, were 

realised in the simplest manner and opened to the non-expert. Most notably, using the NaOtBu 

activation approach, novel cobalt(II)-, manganese(II)- and nickel(II)-catalysed alkene 

hydrofunctionalisation reactions were discovered. Mechanistic investigations show that NaOtBu acts as 
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a masked reducing agent, by forming an ‘ate’ species with HBPin or silanes that serve as pre-catalyst 

activators. The simplicity and generality of this method provides a platform for the development and 

exploitation of non-precious metal catalysis. 
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