4,521 research outputs found

    A Dense Gas Trigger for OH Megamasers

    Full text link
    HCN and CO line diagnostics provide new insight into the OH megamaser (OHM) phenomenon, suggesting a dense gas trigger for OHMs. We identify three physical properties that differentiate OHM hosts from other starburst galaxies: (1) OHMs have the highest mean molecular gas densities among starburst galaxies; nearly all OHM hosts have = 10^3-10^4 cm^-3 (OH line-emitting clouds likely have n(H2) > 10^4 cm^-3). (2) OHM hosts are a distinct population in the nonlinear part of the IR-CO relation. (3) OHM hosts have exceptionally high dense molecular gas fractions, L(HCN)/L(CO)>0.07, and comprise roughly half of this unusual population. OH absorbers and kilomasers generally follow the linear IR-CO relation and are uniformly distributed in dense gas fraction and L(HCN), demonstrating that OHMs are independent of OH abundance. The fraction of non-OHMs with high mean densities and high dense gas fractions constrains beaming to be a minor effect: OHM emission solid angle must exceed 2 pi steradians. Contrary to conventional wisdom, IR luminosity does not dictate OHM formation; both star formation and OHM activity are consequences of tidal density enhancements accompanying galaxy interactions. The OHM fraction in starbursts is likely due to the fraction of mergers experiencing a temporal spike in tidally driven density enhancement. OHMs are thus signposts marking the most intense, compact, and unusual modes of star formation in the local universe. Future high redshift OHM surveys can now be interpreted in a star formation and galaxy evolution context, indicating both the merging rate of galaxies and the burst contribution to star formation.Comment: 5 pages, 3 figures, 1 table, accepted by ApJ Letter

    Effects of Dietary Sodium Intake on Blood Flow Regulation During Exercise in Salt Resistant Individuals

    Get PDF
    PURPOSE: Dietary sodium intake guidelines is ≤2,300 mg/day, yet is exceeded by 90% of Americans. This study examined the impact of a high sodium diet on blood flow regulation during exercise. METHODS: Six males (25 ± 2 years) consumed dietary sodium intake guidelines for two weeks, with one week salt-capsule supplemented (HS: 6,900 mg/day of sodium) and the other week placebo-capsule supplemented (LS: 2,300 mg/day of sodium). At the end of each week, peripheral hemodynamic measurements [blood flow (BF), shear rate (SR), and flow mediated dilation (FMD)/SR)] of the brachial and superficial femoral artery were taken during handgrip (HG) and plantar flexion (PF) exercise, respectively. Each exercise workload was 3 minutes and progressed by 8 kilograms until exhaustion. RESULTS: There were no differences between LS and HS in blood pressure (82 ± 4 v 80 ± 5 mmHg; p = 0.3) or heart rate (56 ± 6 v 59 ± 10 bpm; p = 0.4). HG and PF exercise increased BF, SR, and FMD/SR across workload (p \u3c 0.03 for all), but no difference between diets (p \u3e 0.05 for all). CONCLUSION: Despite previous reports that HS impairs resting vascular function, this study revealed that peripheral vascular function and blood flow regulation during exercise is not impacted by a HS diet.https://scholarscompass.vcu.edu/gradposters/1082/thumbnail.jp

    Potential Energy Surface for H_2 Dissociation over Pd(100)

    Full text link
    The potential energy surface (PES) of dissociative adsorption of H_2 on Pd(100) is investigated using density functional theory and the full-potential linear augmented plane wave (FP-LAPW) method. Several dissociation pathways are identified which have a vanishing energy barrier. A pronounced dependence of the potential energy on ``cartwheel'' rotations of the molecular axis is found. The calculated PES shows no indication of the presence of a precursor state in front of the surface. Both results indicate that steering effects determine the observed decrease of the sticking coefficient at low energies of the H_2 molecules. We show that the topology of the PES is related to the dependence of the covalent H(s)-Pd(d) interactions on the orientation of the H_2 molecule.Comment: RevTeX, 8 pages, 5 figures in uufiles forma

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Properties of Active Galaxies Deduced from H I Observations

    Full text link
    We completed a new survey for H I emission for a large, well-defined sample of 154 nearby (z < 0.1) galaxies with type 1 AGNs. We make use of the extensive database presented in a companion paper to perform a comprehensive appraisal of the cold gas content in active galaxies and to seek new strategies to investigate the global properties of the host galaxies and their relationship to their central black holes (BHs). We show that the BH mass obeys a strong, roughly linear relation with the host galaxy's dynamical mass. BH mass follows a looser, though still highly significant, correlation with the maximum rotation velocity of the galaxy, as expected from the known scaling between rotation velocity and central velocity dispersion. Neither of these H I-based correlations is as tight as the more familiar relations between BH mass and bulge luminosity or velocity dispersion, but they offer the advantage of being insensitive to the glare of the nucleus and therefore are promising new tools for probing the host galaxies of both nearby and distant AGNs. We present evidence for substantial ongoing BH growth in the most actively accreting AGNs. In these nearby systems, BH growth appears to be delayed with respect to the assembly of the host galaxy but otherwise has left no detectable perturbation to its mass-to-light ratio or its global gas content. The host galaxies of type 1 AGNs, including those luminous enough to qualify as quasars, are generally gas-rich systems, possessing a cold interstellar medium reservoir at least as abundant as that in inactive galaxies of the same morphological type. This calls into question current implementations of AGN feedback in models of galaxy formation that predict strong cold gas depletion in unobscured AGNs. (Abridged)Comment: To appear in ApJ; 14 page

    Peculiar Broad Absorption Line Quasars found in DPOSS

    Full text link
    With the recent release of large (i.e., > hundred million objects), well-calibrated photometric surveys, such as DPOSS, 2MASS, and SDSS, spectroscopic identification of important targets is no longer a simple issue. In order to enhance the returns from a spectroscopic survey, candidate sources are often preferentially selected to be of interest, such as brown dwarfs or high redshift quasars. This approach, while useful for targeted projects, risks missing new or unusual species. We have, as a result, taken the alternative path of spectroscopically identifying interesting sources with the sole criterion being that they are in low density areas of the g - r and r - i color-space defined by the DPOSS survey. In this paper, we present three peculiar broad absorption line quasars that were discovered during this spectroscopic survey, demonstrating the efficacy of this approach. PSS J0052+2405 is an Iron LoBAL quasar at a redshift z = 2.4512 with very broad absorption from many species. PSS J0141+3334 is a reddened LoBAL quasar at z = 3.005 with no obvious emission lines. PSS J1537+1227 is a Iron LoBAL at a redshift of z = 1.212 with strong narrow Mgii and Feii emission. Follow-up high resolution spectroscopy of these three quasars promises to improve our understanding of BAL quasars. The sensitivity of particular parameter spaces, in this case a two-color space, to the redshift of these three sources is dramatic, raising questions about traditional techniques of defining quasar populations for statistical analysis.Comment: 27 pages, 13 figures, Accepted to the Astronomical Journa

    MetAMOS: A modular and open source metagenomic assembly and analysis pipeline

    Get PDF
    © 2013 Treangen et al. We describe MetAMOS, an open source and modular metagenomic assembly and analysis pipeline. MetAMOS represents an important step towards fully automated metagenomic analysis, starting with next-generation sequencing reads and producing genomic scaffolds, open-reading frames and taxonomic or functional annotations. MetAMOS can aid in reducing assembly errors, commonly encountered when assembling metagenomic samples, and improves taxonomic assignment accuracy while also reducing computational cost. MetAMOS can be downloaded from: https://github.com/treangen/MetAMOS
    corecore