3 research outputs found

    X-ray diffraction study of feline leukemia virus fusion peptide and lipid polymorphism

    Get PDF
    AbstractThe structural effects of the fusion peptide of feline leukemia virus (FeLV) on the lipid polymorphism of N-methylated dioleoylphosphatidylethanolamine were studied using a temperature ramp with sequential X-ray diffraction. This peptide, the hydrophobic amino-terminus of p15E, has been proven to be fusogenic and to promote the formation of highly curved, intermediate structures on the lamellar liquid-crystal to inverse hexagonal phase transition pathway. The FeLV peptide produces marked effects on the thermotropic mesomorphic behaviour of MeDOPE, a phospholipid with an intermediate spontaneous radius of curvature. The peptide is shown to reduce the lamellar repeat distance of the membrane prior to the onset of an inverted cubic phase. This suggests that membrane thinning may play a role in peptide-induced membrane fusion and strengthens the link between the fusion pathway and inverted cubic phase formation. The results of this study are interpreted in relation to models of the membrane fusion mechanism

    The effect of fusion inhibitors on the phase behaviour of N-methylated dioleoylphosphatidylethanolamine

    Get PDF
    AbstractThe effects of two fusion inhibitors on the lipid polymorphism of N-methylated dioleoylphosphatidylethanolamine were studied using temperature-resolved, small-angle X-ray diffraction. The inhibitory role of the tri-peptide carbobenzoxy-d-phenylalanine-l-phenylalanine-glycine and the lipid 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine in the fusion pathway was studied, using the non-lamellar phase behaviour of the lipid as a model. We used p15EK, the N-terminal region of gp41 from feline leukaemia virus as promoter of membrane fusion, and measured the structural parameters of each observed lipid phase as a function of temperature. The fusion inhibitors were found to impede the expression of negative curvature of lipid monolayers even in the presence of fusion peptide. The results of this study are interpreted in relation to models of the membrane fusion mechanism
    corecore