150 research outputs found

    Macroscopic Anisotropy and Symmetry Breaking in the Pyrochlore Antiferromagnet Gd2_{2}Ti2_{2}O7_{7}}

    Full text link
    In the Heisenberg antiferromagnet Gd2Ti2O7Gd_2Ti_2O_7, the exchange interactions are geometrically frustrated by the pyrochlore lattice structure. This ESR study reveals a strong temperature dependent anisotropy with respect to a [111] body diagonal below a temperature TA=80T_A=80 K, despite the spin only nature of the Gd3+Gd^{3+} ion. Anisotropy and symmetry breaking can nevertheless appear through the superexchange interaction. The presence of short range planar correlation restricted to specific Kagom\'{e} planes is sufficient to explain the two ESR modes studied in this work.Comment: 4 pages, 5 figure

    Hierarchical geometric frustration in La3Cu2VO9

    Full text link
    The crystallographic structure and magnetic properties of the La3Cu2VO9 were investigated by powder neutron diffraction and magnetization measurements. The compound materializes geometric frustration at two spatial scales, within clusters and between clusters, and at different temperature scales. It is shown by exactly solving the hamiltonian spectrum that collective spins are formed on each clusters at low temperature before inter-clusters coupling operates.Comment: 6 pages, 4 figures. HFM2006 proceeding pape

    Inhomogeneous magnetism in the doped kagome lattice of LaCuO2.66

    Full text link
    The hole-doped kagome lattice of Cu2+ ions in LaCuO2.66 was investigated by nuclear quadrupole resonance (NQR), electron spin resonance (ESR), electrical resistivity, bulk magnetization and specific heat measurements. For temperatures above ~180 K, the spin and charge properties show an activated behavior suggestive of a narrow-gap semiconductor. At lower temperatures, the results indicate an insulating ground state which may or may not be charge ordered. While the frustrated spins in remaining patches of the original kagome lattice might not be directly detected here, the observation of coexisting non-magnetic sites, free spins and frozen moments reveals an intrinsically inhomogeneous magnetism. Numerical simulations of a 1/3-diluted kagome lattice rationalize this magnetic state in terms of a heterogeneous distribution of cluster sizes and morphologies near the site-percolation threshold

    CLOCK Genes and Circadian Rhythmicity in Alzheimer Disease

    Get PDF
    Disturbed circadian rhythms with sleep problems and disrupted diurnal activity are often seen in patients suffering from Alzheimer disease (AD). Both endogenous CLOCK genes and external Zeitgeber are responsible for the maintenance of circadian rhythmicity in humans. Therefore, modifications of the internal CLOCK system and its interactions with exogenous factors might constitute the neurobiological basis for clinically observed disruptions in rhythmicity, which often have grave consequences for the quality of life of patients and their caregivers. Presently, more and more data are emerging demonstrating how alterations of the CLOCK gene system might contribute to the pathophysiology of AD and other forms of dementia. At the same time, the impact of neuropsychiatric medication on CLOCK gene expression is under investigation

    Spin excitations in the antiferromagnet NaNiO2

    Full text link
    In NaNiO2, Ni3+ ions form a quasi two dimensional triangular lattice of S = 1=2 spins. The magnetic order observed below 20K has been described as an A type antiferromagnet with ferro- magnetic layers weakly coupled antiferromagnetically. We studied the magnetic excitations with the electron spin resonance for frequencies 1-20 cm-1, in magnetic fields up to 14 T. The bulk of the results are interpreted in terms of a phenomenological model involving bi-axial anisotropy for the spins: a strong easy-plane term, and a weaker anisotropy within the plane. The direction of the easy plane is constrained by the collective Jahn-Teller distortion occurring in this material at 480 K

    Effect of magnesium doping on the orbital and magnetic order in LiNiO2

    Full text link
    In LiNiO2, the Ni3+ ions, with S=1/2 and twofold orbital degeneracy, are arranged on a trian- gular lattice. Using muon spin relaxation (MuSR) and electron spin resonance (ESR), we show that magnesium doping does not stabilize any magnetic or orbital order, despite the absence of interplane Ni2+. A disordered, slowly fluctuating state develops below 12 K. In addition, we find that magnons are excited on the time scale of the ESR experiment. At the same time, a g factor anisotropy is observed, in agreement with 3z2r2>| 3z^{2}-r^{2}> orbital occupancy

    Formation of collective spins in frustrated clusters

    Get PDF
    Using magnetization, specific heat and neutron scattering measurements, as well as exact calculations on realistic models, the magnetic properties of the \lacuvo compound are characterized on a wide temperature range. At high temperature, this oxide is well described by strongly correlated atomic SS=1/2 spins while decreasing the temperature it switches to a set of weakly interacting and randomly distributed entangled pseudo spins S~=1/2\tilde S=1/2 and S~=0\tilde S=0. These pseudo-spins are built over frustrated clusters, similar to the kagom\'e building block, at the vertices of a triangular superlattice, the geometrical frustration intervening then at different scales.Comment: 10 page

    Safety and efficacy of brain biopsy: Results from a single institution retrospective cohort study

    Get PDF
    INTRODUCTION: Brain biopsy provides important histopathological diagnostic information for patients with new intracranial lesions. Although a minimally invasive technique, previous studies report an associated morbidity and mortality between 0.6% and 6.8%. We sought to characterise the risk linked to this procedure, and to establish the feasibility of instigating a day-case brain biopsy pathway at our institution. MATERIALS AND METHODS: This single-centre retrospective case series study included neuronavigation guided mini craniotomy and frameless stereotactic brain biopsies carried out between April 2019 and December 2021. Exclusion criteria were interventions performed for non-neoplastic lesions. Demographic data, clinical and radiological presentation, type of biopsy, histology and complications in the post-operative period were recorded. RESULTS: Data from 196 patients with a mean age of 58.7 years (SD+/-14.4 years) was analysed. 79% (n=155) were frameless stereotactic biopsies and 21% (n=41) neuronavigation guided mini craniotomy biopsies. Complications resulting in acute intracerebral haemorrhage and death, or new persistent neurological deficits were observed in 2% of patients (n=4; 2 frameless stereotactic; 2 open). Less severe complications or transient symptoms were noted in 2.5% of cases (n=5). 8 patients had minor haemorrhages in the biopsy tract with no clinical ramifications. Biopsy was non-diagnostic in 2.5% (n=5) of cases. Two cases were subsequently identified as lymphoma. Other reasons included insufficient sampling, necrotic tissue, and target error. DISCUSSION AND CONCLUSION: This study demonstrates that brain biopsy is a procedure with an acceptably low rate of severe complications and mortality, in line with previously published literature. This supports the development of day-case pathway allowing improved patient flow, reducing the risk of iatrogenic complications associated with hospital stay, such as infection and thrombosis

    Mean-field Study of Charge, Spin, and Orbital Orderings in Triangular-lattice Compounds ANiO2 (A=Na, Li, Ag)

    Full text link
    We present our theoretical results on the ground states in layered triangular-lattice compounds ANiO2 (A=Na, Li, Ag). To describe the interplay between charge, spin, orbital, and lattice degrees of freedom in these materials, we study a doubly-degenerate Hubbard model with electron-phonon couplings by the Hartree-Fock approximation combined with the adiabatic approximation. In a weakly-correlated region, we find a metallic state accompanied by \sqroot3x\sqroot3 charge ordering. On the other hand, we obtain an insulating phase with spin-ferro and orbital-ferro ordering in a wide range from intermediate to strong correlation. These phases share many characteristics with the low-temperature states of AgNiO2 and NaNiO2, respectively. The charge-ordered metallic phase is stabilized by a compromise between Coulomb repulsions and effective attractive interactions originating from the breathing-type electronphonon coupling as well as the Hund's-rule coupling. The spin-orbital-ordered insulating phase is stabilized by the cooperative effect of electron correlations and the Jahn-Teller coupling, while the Hund's-rule coupling also plays a role in the competition with other orbital-ordered phases. The results suggest a unified way of understanding a variety of low-temperature phases in ANiO2. We also discuss a keen competition among different spin-orbital-ordered phases in relation to a puzzling behavior observed in LiNiO2
    corecore