32 research outputs found
Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium
The HMG-box transcription factor Sox9 is expressed in the intestinal epithelium, specifically, in stem/progenitor cells and in Paneth cells. Sox9 expression requires an active β-catenin–Tcf complex, the transcriptional effector of the Wnt pathway. This pathway is critical for numerous aspects of the intestinal epithelium physiopathology, but processes that specify the cell response to such multipotential signals still remain to be identified. We inactivated the Sox9 gene in the intestinal epithelium to analyze its physiological function. Sox9 inactivation affected differentiation throughout the intestinal epithelium, with a disappearance of Paneth cells and a decrease of the goblet cell lineage. Additionally, the morphology of the colon epithelium was severely altered. We detected general hyperplasia and local crypt dysplasia in the intestine, and Wnt pathway target genes were up-regulated. These results highlight the central position of Sox9 as both a transcriptional target and a regulator of the Wnt pathway in the regulation of intestinal epithelium homeostasis
Targeting of the Tumor Suppressor GRHL3 by a miR-21-Dependent Proto-Oncogenic Network Results in PTEN Loss and Tumorigenesis
SummaryDespite its prevalence, the molecular basis of squamous cell carcinoma (SCC) remains poorly understood. Here, we identify the developmental transcription factor Grhl3 as a potent tumor suppressor of SCC in mice, and demonstrate that targeting of Grhl3 by a miR-21-dependent proto-oncogenic network underpins SCC in humans. Deletion of Grhl3 in adult epidermis evokes loss of expression of PTEN, a direct GRHL3 target, resulting in aggressive SCC induced by activation of PI3K/AKT/mTOR signaling. Restoration of Pten expression completely abrogates SCC formation. Reduced levels of GRHL3 and PTEN are evident in human skin, and head and neck SCC, associated with increased expression of miR-21, which targets both tumor suppressors. Our data define the GRHL3-PTEN axis as a critical tumor suppressor pathway in SCC
Treatments of Squamous Cell Cancer
It is now clear that the most common solid cancer is squamous cell cancer (SCC) [...
Squamous Cell Carcinoma—A Summary of Novel Advances in Pathogenesis and Therapies
Squamous cell carcinomas (SCCs) are cancers of epithelial cells lining the aerodigestive and genitourinary tract [...
Études de la compartimentation des Claudines 1, 2, 4 et 7 dans le côlon humain normal et tumoral (dialogue avec la voie Wnt/b-caténine/Tcf-4)
MONTPELLIER-BU Médecine UPM (341722108) / SudocMONTPELLIER-BU Médecine (341722104) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF
Stem cells behind the barrier
Epidermal stem cells sustain the adult skin for a lifetime through self-renewal and the production of committed progenitors. These stem cells generate progeny that will undergo terminal differentiation leading to the development of a protective epidermal barrier. Whereas the molecular mechanisms that govern epidermal barrier repair and renewal have been extensively studied, pathways controlling stem cell differentiation remain poorly understood. Asymmetric cell divisions, small non-coding RNAs (microRNAs), chromatin remodeling complexes, and multiple differentiation factors tightly control the balance of stem and progenitor cell proliferation and differentiation, and disruption of this balance leads to skin diseases. In this review, we summarize and discuss current advances in our understanding of the mechanisms regulating epidermal stem and progenitor cell differentiation, and explore new relationships for maintenance of skin barrier function
Targeted Therapy Against the Cell of Origin in Cutaneous Squamous Cell Carcinoma
Squamous cell carcinomas (SCC), including cutaneous SCCs, are by far the most frequent cancers in humans, accounting for 80% of all newly diagnosed malignancies worldwide. The old dogma that SCC develops exclusively from stem cells (SC) has now changed to include progenitors, transit-amplifying and differentiated short-lived cells. Accumulation of specific oncogenic mutations is required to induce SCC from each cell population. Whilst as fewer as one genetic hit is sufficient to induce SCC from a SC, multiple events are additionally required in more differentiated cells. Interestingly, the level of differentiation correlates with the number of transforming events required to induce a stem-like phenotype, a long-lived potential and a tumourigenic capacity in a progenitor, a transient amplifying or even in a terminally differentiated cell. Furthermore, it is well described that SCCs originating from different cells of origin differ not only in their squamous differentiation status but also in their malignant characteristics. This review summarises recent findings in cutaneous SCC and highlights transforming oncogenic events in specific cell populations. It underlines oncogenes that are restricted either to stem or differentiated cells, which could provide therapeutic target selectivity against heterogeneous SCC. This strategy may be applicable to SCC from different body locations, such as head and neck SCCs, which are currently still associated with poor survival outcomes
Loss of grainy head-like 1 is associated with disruption of the epidermal barrier and squamous cell carcinoma of the skin
The Grainyhead-like 1 (GRHL1) transcription factor regulates the expression of desmosomal cadherin desmoglein 1 (Dsg1) in suprabasal layers of the epidermis. As a consequence, the epidermis of Grhl1-null mice displays fewer desmosomes that are abnormal in structure. These mice also exhibit mild chronic skin barrier defects as evidenced by altered keratinocyte terminal differentiation, increased expression of inflammatory markers and infiltration of the skin by immune cells. Exposure of Grhl1 (−/−) mice to a standard chemical skin carcinogenesis protocol results in development of fewer papillomas than in wild type control animals, but with a rate of conversion to squamous cell carcinoma (SCC) that is strikingly higher than in normal littermates. The underlying molecular mechanism differs from mice with conditional ablation of a closely related Grhl family member, Grhl3, in the skin, which develop SCC due to the loss of expression of phosphatase and tensin homolog (PTEN) and activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) signaling pathway