28 research outputs found

    Modélisation numérique de la dynamique des ions froids dans le cadre de la reconnexion magnétique à la magnétopause terrestre

    Get PDF
    Magnetic reconnection is a process allowing the conversion of magnetic energy into kinetic and thermal energies. It also leads to the mixing of plasmas. At the Earth's magnetopause, in particular, it allows the transfer of energy and matter from the solar wind to the magnetosphere. The importance of this transfer depends on the reconnection rate, which is itself dependent on local plasma conditions. The recurrent presence of cold plasma populations of ionospheric origin at the magnetopause is proposed to impact the properties and efficiency of the process. This thesis looks into the effects of such cold populations on asymmetric magnetic reconnection using the state-of-the-art numerical kinetic simulations. The first part of this work is interested in the current sheet structure and demonstrates, using a recently developed kinetic equilibrium, that the initial equilibrium in fact does not impact the properties of the ensuing magnetic reconnection growth. The latter only depends on the instantaneously reconnecting plasma. A second part of this thesis shows that when this plasma contains cold ions, these latter modify expected observational signatures of reconnection sites. Magnetic reconnection heats and accelerates cold ions. The third part of this work predicts original signatures due to this dynamics and offers an analytical model to explain one of them. These results are being confronted with data from the recent MMS mission, which is targeted at studying reconnection sites at small scales.La reconnexion magnétique est un processus qui permet la conversion d'énergie magnétique en énergies cinétique et thermique, et autorise le mélange de plasmas. À la magnétopause terrestre, en particulier, elle est responsable d'un transfert d'énergie et de matière du vent solaire vers la magnétosphère. L'importance de ce transfert dépend du taux de reconnexion, qui lui-même varie en fonction des conditions locales du plasma. La présence fréquente à la magnétopause de populations froides d'origine ionosphérique est donc susceptible d'influer sur les propriétés et l'efficacité du processus. Cette thèse cherche à déterminer à l'aide de simulations numériques cinétiques quels sont les effets de ces populations froides sur la reconnexion magnétique asymétrique. La première partie de ce travail s'intéresse à la structure de la couche de courant et prouve, en se servant d'un équilibre cinétique récemment développé, que l'équilibre initial n'a en fait pas d'impact sur le développement de la reconnexion magnétique. Cette dernière ne dépend que du plasma reconnectant à un moment donné. Une deuxième partie de cette thèse montre que lorsque ce plasma contient des ions froids, ces derniers peuvent modifier des signatures observationelles des sites de reconnexion. La reconnexion magnétique chauffe et accélère également les ions froids. La troisième partie de ce travail prédit des signatures observationnelles inédites liées à cette dynamique et propose un modèle analytique pour expliquer l'une d'elles. Ces résultats pourront être confrontés aux données dans le cadre de la récente mission MMS, dont l'objectif est l'étude des sites de reconnexion à petite échelle

    A large-scale instability competing with Kelvin-Helmholtz at Mercury's boundary layer

    No full text
    International audienceMagnetic reconnexion and Kelvin-Helmholtz (KH) instability are usually recognized as the two main mixing processes along magnetopauses. However, a recent work [Dargent et al., 2019] showed that in Mercury"s conditions, another instability can grow faster than the KH instability along the magnetopause. This instability seems to rely on gradients of density and/or magnetic field and develops large-scales finger-like structures that prevents the growth of the KH vortices. In this work, I will characterize this instability and try to identify it. In particular, I will look at the dependance of the growth rate of this instability to the different parameters of the plasma and compare it to the growth rate of the Kelvin-Helmholtz instability

    Orientation of the X-line in asymmetric magnetic reconnection

    No full text
    International audienceMagnetic reconnection can occur in current sheets separating magnetic fields sheared by any angle and of arbitrarily different amplitudes. In such asymmetric and non-coplanar systems, it is not yet understood what the orientation of the X-line will be. Studying how this orientation is determined locally by the reconnection process is important to understand systems such as the Earth magnetopause, where reconnection occurs in regions with large differences in upstream plasma and field properties. This study aims at determining what the local X-line orientation is for different upstream magnetic shear angles in an asymmetric set-up relevant to the Earth's magnetopause. We use two-dimensional hybrid simulations and vary the simulation plane orientation with regard to the fixed magnetic field profile and search for the plane maximizing the reconnection rate. We find that the plane defined by the bisector of upstream fields maximizes the reconnection rate and this appears not to depend on the magnetic shear angle, domain size or upstream plasma and asymmetries

    Asymmetric kinetic equilibria: Generalization of the BAS model for rotating magnetic profile and non-zero electric field

    No full text
    International audienceFinding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (19581988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251317 (1996); and F. Mottez, Phys. Plasmas 10, 15411545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 81398148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation

    Analyzing the Magnetopause Internal Structure: New Possibilities Offered by MMS Tested in a Case Study

    No full text
    International audienceWe explore the structure of the magnetopause using a crossing observed by the Magnetospheric Multiscale (MMS) spacecraft on 16 October 2015. Several methods (minimum variance analysis, BV method, and constant velocity analysis) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical, and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyze more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one‐dimensional physical problem, we introduce a new single spacecraft method, called LNA (local normal analysis) for determining the varying normal, and we compare the results so obtained with those coming from the multispacecraft minimum directional derivative (MDD) tool developed by Shi et al. (2005). This last method gives the dimensionality of the magnetic variations from multipoint measurements and also allows estimating the direction of the local normal when the variations are locally 1‐D. This study shows that the magnetopause does include approximate one‐dimensional substructures but also two‐ and three‐dimensional structures. It also shows that the dimensionality of the magnetic variations can differ from the variations of other fields so that, at some places, the magnetic field can have a 1‐D structure although all the plasma variations do not verify the properties of a global one‐dimensional problem. A generalization of the MDD tool is proposed

    Signatures of Cold Ions in a Kinetic Simulation of the Reconnecting Magnetopause

    No full text
    International audienceAbstract At the Earth's magnetopause, a low-energy ion population of ionospheric origin is commonly observed at the magnetospheric side. In this work we use a 2-D fully kinetic simulation to identify several original signatures related to the dynamics of cold ions involved in magnetic reconnection at the asymmetric dayside magnetopause. We identify several original signatures of the cold ions dynamics driven by the development of magnetic reconnection at the asymmetric dayside magnetopause. We find that cold ions tend to rarefy in the diffusion region, while their density is enhanced as a result of compression along magnetospheric separatrices. We also observe the formation of crescent-shaped cold ion distribution functions along the separatrices in the near-exhaust region, and we present an analytical model to explain this signature. Finally, we give evidence of a localized parallel heating of cold ions. These signatures should be detected with the magnetospheric multiscale mission high-resolution observations

    Interplay between Kelvin-Helmholtz and Lower-Hybrid Drift instabilities

    No full text
    International audienceBoundary layers in space and astrophysical plasmas are the location of complex dynamics where different mechanisms coexist and compete eventually leading to plasma mixing. In this work, we present fully kinetic Particle-In-Cell simulations of different boundary layers characterized by the following main ingredients: a velocity shear, a density gradient and a magnetic gradient localized at the same position. In particular, the presence of a density gradient drives the development of the lower hybrid drift instability (LHDI), which competes with the Kelvin-Helmholtz instability (KHI) in the development of the boundary layer. Depending on the density gradient, the LHDI can even dominate the dynamics of the layer. Because these two instabilities grow on different spatial and temporal scales, when the LHDI develops faster than the KHI an inverse cascade is generated, at least in 2D. This inverse cascade, starting at the LHDI kinetic scales, generates structures at scale lengths at which the KHI would typically develop. When that is the case, those structures can suppress the KHI itself because they significantly affect the underlying velocity shear gradient. We conclude that depending on the density gradient, the velocity jump and the width of the boundary layer, the LHDI in its nonlinear phase can become the primary instability for plasma mixing. These numerical simulations show that the LHDI is likely to be a dominant process at the magnetopause of Mercury. These results are expected to be of direct impact to the interpretation of the forthcoming BepiColombo observations

    Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

    No full text
    International audienceTangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic Particle-In-Cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations upon their initial condition. We show that, as the current sheet evolves from symmetric to asymmetric upstream plasmas, the reconnection rate is impacted, the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet

    Asymmetric kinetic equilibria: demonstration of the independence of magnetic reconnection signatures to the initial current sheet structure.

    No full text
    International audienceCurrent sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. The BAS model is a semi-analytical model which provides a steady distribution function for asymmetric current sheet ions. In this paper, we prove that an ion kinetic equilibria produced by this model remain steady in a fully kinetic Particle-In-Cell simulation even if the electron distribution function is not an equilibrium. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations upon their initial condition. We demonstrate that regardless of macroscopic or microscopic differences between initial current sheets, signatures of magnetic reconnection only depends on the upstream plasma. This demonstration is the first to confirm this widely use assumption and comforts the relevance of comparisons between simulations and observations in the electron decoupling region, such as in the context of the upcoming Magnetospheric Multiscale mission
    corecore