26 research outputs found

    Evaluation of a multiplex PCR method to serotype Salmonella in animal feeds pre-enrichment broth cultures

    No full text
    The identification of Salmonella enterica serotypes remains a highly important public health concern for microbiological analysis of foods, feeds, and clinical samples. Outbreaks of human salmonellosis are sometimes linked to contact with infected animals and animal feeds. To possibly reduce the number of outbreaks, it is important to rapidly, efficiently detect Salmonella enterica in animal feeds and food products. A multiplex PCR for molecular serotyping of Salmonella enterica previously used in a single lab validation study for serotyping in multiple human food matrices was used in this investigation to evaluate the effectiveness of the multiplex PCR assay as serotyping method and screening tool for Salmonella in animal feeds. This approach is unique in that: • The multiplex PCR serotyping assay may be used for rapid screening and serotyping of Salmonella enterica from contaminated animal feed at the non-selective pre-enrichment step. • The assay may provide the serotype or identification of Salmonella in positive samples at concentration as low as 10 CFU/25 g after a 24 h non-selective pre-enrichment step. • In addition to the ability to serotype, this assay contains invA as an internal control for Salmonella positive identification. The invA shows positive indication for Salmonella outside of the 30 serotypic banding patterns

    Whole Genome DNA Sequence Analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

    No full text
    Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS) to Salmonella subspecies enterica serotype Tennessee (S. Tennessee) to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana), which were also shot-gun sequenced. A whole genome single nucleotide polymorphism (SNP) analysis was performed using a maximum likelihood approach to infer phylogenetic relationships. Several monophyletic lineages of S. Tennessee with limited SNP variability were identified that recapitulated several food contamination events. S. Tennessee clades were separated from outgroup salmonellae by more than sixteen thousand SNPs. Intra-serovar diversity of S. Tennessee was small compared to the chosen outgroups (1,153 SNPs), suggesting recent divergence of some S. Tennessee clades. Analysis of all 1,153 SNPs structuring an S. Tennessee peanut butter outbreak cluster revealed that isolates from several food, plant, and clinical isolates were very closely related, as they had only a few SNP differences between them. SNP-based cluster analyses linked specific food sources to several clinical S. Tennessee strains isolated in separate contamination events. Environmental and clinical isolates had very similar whole genome sequences; no markers were found that could be used to discriminate between these sources. Finally, we identified SNPs within variable S. Tennessee genes that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks. Using WGS can delimit contamination sources for foodborne illnesses across multiple outbreaks and reveal otherwise undetected DNA sequence differences essential to the tracing of bacterial pathogens as they emerge

    Whole-Genome Sequencing of Salmonella enterica subsp. enterica Serovar Cubana Strains Isolated from Agricultural Sources

    No full text
    We report the draft genomes of Salmonella enterica subsp. enterica serovar Cubana strain CVM42234, isolated from chick feed in 2012, and S. Cubana strain 76814, isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 bp, respectively
    corecore