94 research outputs found

    Dust extinction bias in the column density distribution of gamma-ray bursts; high column density, low redshift GRBs are more heavily obscured

    Full text link
    The afterglows of gamma-ray bursts (GRBs) have more soft X-ray absorption than expected from the foreground gas column in the Galaxy. While the redshift of the absorption can in general not be constrained from current X-ray observations, it has been assumed that the absorption is due to metals in the host galaxy of the GRB. The large sample of X-ray afterglows and redshifts now available allows the construction of statistically meaningful distributions of the metal column densities. We construct such a sample and show, as found in previous studies, that the typical absorbing column density (N_HX) increases substantially with redshift, with few high column density objects found at low to moderate redshifts. We show, however, that when highly extinguished bursts are included in the sample, using redshifts from their host galaxies, high column density sources are also found at low to moderate redshift. We infer from individual objects in the sample and from observations of blazars, that the increase in column density with redshift is unlikely to be related to metals in the intergalactic medium or intervening absorbers. Instead we show that the origin of the apparent increase with redshift is primarily due to dust extinction bias: GRBs with high X-ray absorption column densities found at z≲4z\lesssim4 typically have very high dust extinction column densities, while those found at the highest redshifts do not. It is unclear how such a strongly evolving N_HX/A_V ratio would arise, and based on current data, remains a puzzle.Comment: 7 pages, 3 figures. Accepted for publication in ApJ, 1 August 201

    The metals-to-dust ratio to very low metallicities using GRB and QSO absorbers; extremely rapid dust formation

    Full text link
    Among the key parameters defining the ISM of galaxies is the fraction of the metals that are locked up in dust: the metals-to-dust ratio. This ratio bears not only on the ISM and its evolution, but particularly on the origin of cosmic dust. We combine extinction and abundance data from GRB afterglows, from QSO absorbers, as well as from galaxy-lensed QSOs, to determine the metals-to-dust ratios for lines-of-sight through a wide diversity of galaxies from blue, dwarf starbursts to massive ellipticals, across a vast range in redshift z=0.1-6.3, and nearly three orders of magnitude in column density and metal abundance. We thus determine the metals-to-dust ratio in a unique way, providing direct determinations of in situ gas and dust columns without recourse to assumptions with large uncertainties. We find that the metals-to-dust ratios in these systems are surprisingly close to the value for the local group (10^{21.3} cm-2 A_V mag-1), with a mean value of 10^{21.2} cm-2 A_V mag-1 and a standard deviation of 0.3 dex. There is no evidence of deviation from this mean ratio as a function of metallicity, even down to our lowest metallicity of 0.01 Z/Z_sun. The lack of any obvious dependence of the metals-to-dust ratio on either column density, galaxy type or age, redshift, or metallicity indicates a close correspondence between the formation of the metals and the formation of dust. Any delay between the formation of metals and dust must be shorter than the typical metal-enrichment times of these galaxies. Formation of the bulk of the dust in low mass stars is therefore ruled out by these data at any cosmic epoch. Furthermore, dust destruction must not dominate over formation/growth in virtually any galaxy environment. The correlation between metals and dust is a natural consequence of the formation of the bulk of dust in SNe [Abridged].Comment: 6 pages, 3 figures, 1 tabl

    The Galactic dust-to-metals ratio and metallicity using gamma-ray bursts

    Full text link
    The metallicity and dust-to-metals ratio of the Galaxy are fundamental parameters in understanding the ISM, but there is still uncertainty surrounding these parameters. In this paper, the dust-to-metals ratio in the Galaxy is determined using the photoelectric absorption of the X-ray afterglows of a sample of several hundred gamma-ray bursts (GRBs) to determine the metal column density in combination with Galactic dust maps to determine the line-of-sight dust extinction through the Galaxy in the direction of the GRB. GRB afterglows often have large extragalactic soft X-ray absorptions and therefore the GRB sample's upper-bound will define the Galactic dust-to-metals relation. Using a two-dimensional two-sample KS test, we determine this upper-bound and so derive the dust-to-metals ratio of the Galaxy. We find N_H = 2.2^{+0.3}_{-0.4}e21 cm^-2 A_V assuming solar, Anders & Grevesse (1989), metallicity. This result is consistent with previous findings using bright X-ray sources in the Galaxy. Using the same technique but substituting the HI maps from the Leiden-Argentine-Bonn survey for the dust maps, allows us to place a limit on the metallicity in the Galaxy. We find a metallicity consistent with the Anders & Grevesse (1989) solar values often used in X-ray fitting. Based on this and previous studies, we suggest that the metallicity of a typical ISM sightline through the Galaxy is ~0.25 dex higher than the current best estimate of the solar metallicity. We further show that the dust-to-gas ratio seems to be correlated with the total gas column density, and that this may be due to the metallicity gradient observed toward the Galactic centre. Based on the non-constant nature of the dust-to-gas ratio, we propose that the dust column density, at N_H = 2.2e21 cm^-2 A_V, represents a better proxy for the soft X-ray absorption column density than HI maps.Comment: A&A in press, 6 pages, 3 figure

    On inferring extinction laws in z~6 quasars as signatures of supernova dust

    Full text link
    Unusual extinction curves of high-redshift QSOs have been taken as evidence that dust is primarily produced by supernovae at high redshift. In particular, the 3000 A Todini-Ferrara-Maiolino kink in the extinction curve of the z = 6.20 SDSS J1048+4637 has been attributed to supernova dust. Here we discuss the challenges in inferring robust extinction curves of high-redshift QSOs and critically assess previous claims of detection of supernova dust. In particular, we address the sensitivity to the choice of intrinsic QSO spectrum, the need for a long wavelength baseline, and the drawbacks in fitting theoretical extinction curves. In a sample of 21 QSOs at z ~ 6 we detect significant ultraviolet extinction using existing broad-band optical, near-infrared, and Spitzer photometry. The median extinction curve is consistent with a Small Magellanic Cloud curve with A_1450 ~ 0.7 mag and does not exhibit any conspicuous (restframe) 2175 A or 3000 A features. For two QSOs, SDSS J1044-0125 at z = 5.78 and SDSS J1030+0524 at z = 6.31, we further present X-shooter spectra covering the wavelength range 0.9-2.5 um. The resulting non-parametric extinction curves do not exhibit the 3000 A kink. Finally, in a re-analysis of literature spectra of SDSS J1048+4637, we do not find evidence for a conspicuous kink. We conclude that the existing evidence for a 3000 A feature is weak and that the overall dust properties at high and low redshift show no significant differences. This, however, does not preclude supernovae from dominating the dust budget at high redshift.Comment: 13 pages, 13 figures, ApJ, in pres

    Dusting off the diffuse interstellar bands: DIBs and dust in extragalactic SDSS spectra

    Full text link
    Using over a million and a half extragalactic spectra we study the properties of the mysterious Diffuse Interstellar Bands (DIBs) in the Milky Way. These data provide us with an unprecedented sampling of the skies at high Galactic-latitude and low dust-column-density. We present our method, study the correlation of the equivalent width of 8 DIBs with dust extinction and with a few atomic species, and the distribution of four DIBs - 5780.6A, 5797.1A, 6204.3A, and 6613.6A - over nearly 15000 squared degrees. As previously found, DIBs strengths correlate with extinction and therefore inevitably with each other. However, we show that DIBs can exist even in dust free areas. Furthermore, we find that the DIBs correlation with dust varies significantly over the sky. DIB under- or over-densities, relative to the expectation from dust, are often spread over hundreds of square degrees. These patches are different for the four DIBs, showing that they are unlikely to originate from the same carrier, as previously suggested.Comment: MNRAS accepte

    On Inferring Extinction Laws in Z -approximately 6 Quasars as Signatures of Supernova Dust

    Get PDF
    Unusual extinction curves of high-redshift QSOs have been taken as evidence that dust is primarily produced by supernovae at high redshift. In particular, the 3000 A Todini-Ferrara-Maiolino kink in the extinction curve of the z = 6.20 SDSS J1048+4637 has been attributed to supernova dust. Here we discuss the challenges in inferring robust extinction curves of high-redshift QSOs and critically assess previous claims of detection of supernova dust. In particular, we address the sensitivity to the choice of intrinsic QSO spectrum, the need for a long wavelength baseline, and the drawbacks in fitting theoretical extinction curves. In a sample of 21 QSOs at z 6 we detect significant ultraviolet extinction using existing broad-band optical, near-infrared, and Spitzer photometry. The median extinction curve is consistent with a Small Magellanic Cloud curve with A1450 0.7 mag and does not exhibit any conspicuous (restframe) 2175 A or 3000 A features. For two QSOs, SDSS J10440125 at z = 5.78 and SDSS J1030+0524 at z = 6.31, we further present X-shooter spectra covering the wavelength range 0.9-2.5 m. The resulting non-parametric extinction curves do not exhibit the 3000 A kink. Finally, in a re-analysis of literature spectra of SDSS J1048+4637, we do not find evidence for a conspicuous kink. We conclude that the existing evidence for a 3000 A feature is weak and that the overall dust properties at high and low redshift show no significant differences. This, however, does not preclude supernovae from dominating the dust budget at high redshift

    A merger in the dusty, z=7.5z=7.5 galaxy A1689-zD1?

    Get PDF
    The gravitationally-lensed galaxy A1689-zD1 is one of the most distant spectroscopically confirmed sources (z=7.5z=7.5). It is the earliest known galaxy where the interstellar medium (ISM) has been detected; dust emission was detected with the Atacama Large Millimetre Array (ALMA). A1689-zD1 is also unusual among high-redshift dust emitters as it is a sub-L* galaxy and is therefore a good prospect for the detection of gaseous ISM in a more typical galaxy at this redshift. We observed A1689-zD1 with ALMA in bands 6 and 7 and with the Green Bank Telescope (GBT) in band QQ. To study the structure of A1689-zD1, we map the mm thermal dust emission and find two spatial components with sizes about 0.4−1.70.4-1.7\,kpc (lensing-corrected). The rough spatial morphology is similar to what is observed in the near-infrared with {\it HST} and points to a perturbed dynamical state, perhaps indicative of a major merger or a disc in early formation. The ALMA photometry is used to constrain the far-infrared spectral energy distribution, yielding a dust temperature (Tdust∼35T_{\rm dust} \sim 35--4545\,K for β=1.5−2\beta = 1.5-2). We do not detect the CO(3-2) line in the GBT data with a 95\% upper limit of 0.3\,mJy observed. We find a slight excess emission in ALMA band~6 at 220.9\,GHz. If this excess is real, it is likely due to emission from the [CII] 158.8\,μ\mum line at z[CII]=7.603z_{\rm [CII]} = 7.603. The stringent upper limits on the [CII]/LFIRL_{\rm FIR} luminosity ratio suggest a [CII] deficit similar to several bright quasars and massive starbursts.Comment: 9 pages, accepted to MNRAS, in pres

    Measuring the Hubble constant with kilonovae using the Expanding Photosphere Method

    Full text link
    While gravitational wave (GW) standard sirens from neutron star (NS) mergers have been proposed to offer good measurements of the Hubble constant, we show in this paper how a variation of the expanding photosphere method (EPM) or spectral-fitting expanding atmosphere method, applied to the kilonovae (KNe) associated with the mergers, can provide an independent and potentially percent-accurate distance measurement to individual mergers. The KN-EPM overcomes the major uncertainties commonly associated with this method in supernovae for four reasons: 1) the early continuum is very well-reproduced by a blackbody spectrum, 2) the dilution effect from electron scattering opacity is likely negligible, 3) the explosion times are exactly known due to the GW detection, and 4) the ejecta geometry is, at least in some cases, highly spherical and can be constrained from line-shape analysis. We provide an analysis of the early VLT/X-shooter spectra AT2017gfo showing how the luminosity distance can be determined, and find a luminosity distance of DL=44.5±0.5 D_L = 44.5\pm0.5\,Mpc in agreement with, but more precise than, previous methods. We investigate the dominant systematic uncertainties, but our simple framework, which assumes a blackbody photosphere, does not account for the full time-dependent, three-dimensional radiative transfer effects, so this distance should be treated as preliminary. The luminosity distance corresponds to an estimated Hubble constant of H0=67.1±3.4 H_0 = 67.1\pm 3.4\,km \,s−1 ^{-1}\,Mpc−1^{-1}, where the dominant uncertainty is due to the modelling of the host peculiar velocity. We also estimate the expected constraints on H0H_0 from future KN-EPM-analysis with the upcoming O4 and O5 runs of the LIGO collaboration GW-detectors, where 5-10 similar KNe would yield 1% precision cosmological constraints.Comment: Submitted to A&A. Comments are welcom
    • …
    corecore