41 research outputs found

    Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations

    Get PDF
    The central dogma of biology proposed that one gene encodes for one protein. We now know that this does not reflect reality. The human body has approximately 20,000 protein-encoding genes; each of these genes can encode more than one protein. Proteins expressed from a single gene can vary in terms of their post-translational modifications, which often regulate their function within the body. Understanding the proteins within our bodies is a key step in understanding the cause, and perhaps the solution, to disease. This is one of the application areas of proteomics, which is defined as the study of all proteins expressed within an organism at a given point in time. The human proteome is incredibly complex. The complexity of biological samples requires a combination of technologies to achieve high resolution and high sensitivity analysis. Despite the significant advances in mass spectrometry, separation techniques are still essential in this field. Liquid chromatography is an indispensable tool by which low-abundant proteins in complex samples can be enriched and separated. However, advances in chromatography are not as readily adapted in proteomics compared to advances in mass spectrometry. Biologists in this field still favour reversed-phase chromatography with fully porous particles. The purpose of this review is to highlight alternative selectivities and stationary phase morphologies that show potential for application in top-down proteomics; the study of intact proteins

    Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs

    Get PDF
    Numerous regulatory genes have G-rich regions that can potentially form quadruplex structures, possibly playing a role in transcription regulation. We studied a G-rich sequence in the BCL2 gene 176-bp upstream of the P1 promoter for G-quadruplex formation. Using circular dichroism (CD), thermal denaturation and dimethyl sulfate (DMS) footprinting, we found that a single-stranded oligonucleotide with the sequence of the BCL2 G-rich region forms a potassium-stabilized G-quadruplex. To study G-quadruplex formation in double-stranded DNA, the G-rich sequence of the BCL2 gene was inserted into plasmid DNA. We found that a G-quadruplex did not form in the insert at physiological conditions. To induce G-quadruplex formation, we used short peptide nucleic acids (PNAs) that bind to the complementary C-rich strand. We examined both short duplex-forming PNAs, complementary to the central part of the BCL2 gene, and triplex-forming bis-PNAs, complementary to sequences adjacent to the G-rich BCL2 region. Using a DMS protection assay, we demonstrated G-quadruplex formation within the G-rich sequence from the promoter region of the human BCL2 gene in plasmid DNA. Our results show that molecules binding the complementary C-strand facilitate G-quadruplex formation and introduce a new mode of PNA-mediated sequence-specific targeting

    Circular dichroism and conformational polymorphism of DNA

    Get PDF
    Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA

    Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>TP53 </it>is one of major tumour suppressor genes being essential in preservation of genome integrity. Two very common polymorphisms have been demonstrated to contribute to cancer susceptibility and tumour behaviour. The purpose of this study was to evaluate the role of <it>Arg72Pro </it>and <it>PIN3 Ins16bp </it>polymorphisms in <it>TP53 </it>gene as genetic susceptibility and predictive markers to breast cancer.</p> <p>Methods</p> <p>We analysed DNA samples from 264 breast cancer patients and 440 controls, for <it>TP53 Arg72Pro </it>and <it>PIN3 Ins16bp </it>polymorphisms using PCR-RFLP.</p> <p>Results</p> <p>We observed that women with <it>A2A2 </it>genotype have increased risk for developing breast cancer, either in women with or without familial history (FH) of the disease (OR = 4.40, 95% CI 1.60–12.0; p = 0.004; OR = 3.88, 95% CI 1.18–12.8; p = 0.026, respectively). In haplotype analysis, statistically significant differences were found between <it>TP53 Arg-A2 </it>haplotype frequencies and familial breast cancer cases and the respective control group (OR = 2.10, 95% CI 1.08–4.06; p = 0.028). Furthermore, both <it>TP53 </it>polymorphisms are associated with higher incidence of lymph node metastases.</p> <p>Conclusion</p> <p>Our findings suggest <it>TP53 PIN3 Ins16bp </it>polymorphism as a real risk modifier in breast cancer disease, either in sporadic and familial breast cancer. Furthermore, both TP53 polymorphisms are associated with higher incidence of lymph node metastases.</p
    corecore