26 research outputs found

    The seasonal foot printing mechanism of spring Arctic sea ice in the Bergen climate models

    Get PDF
    The influence of spring Arctic sea ice variability on the Pacific Decadal Oscillation (PDO) like sea surface temperature (SST) variability is established and investigated using an Atmosphere Ocean General Circulation Model (AOGCM) of the Bergen Climate Model version 2 (BCM2). The spring Arctic sea ice variability affects the mid-latitudes and tropics through the propagation of the anomalous Eliassen-Palm (E-P) flux from the polar region to mid- and low-latitudes during boreal spring. The pathway includes anomalous upward wave activity, which propagates to the high troposphere from near the surface of the polar region, turns southward between 500 hPa and 200 hPa and extends downward between 50°N and 70°N, influencing the near surface atmospheric circulation. The alteration of the near surface atmospheric circulation then causes anomalous surface ocean circulation. These circulation changes consequently leads to the SST anomalies in the North Pacific which may persist until the following summer, named seasonal “foot printing” mechanism (SFPM)

    East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIR_(CPC))

    Get PDF
    Aerosols have significant and complex impacts on regional climate in East Asia. Cloud‐aerosol‐precipitation interactions (CAPI) remain most challenging in climate studies. The quantitative understanding of CAPI requires good knowledge of aerosols, ranging from their formation, composition, transport, and their radiative, hygroscopic, and microphysical properties. A comprehensive review is presented here centered on the CAPI based chiefly, but not limited to, publications in the special section named EAST‐AIRcpc concerning (1) observations of aerosol loading and properties, (2) relationships between aerosols and meteorological variables affecting CAPI, (3) mechanisms behind CAPI, and (4) quantification of CAPI and their impact on climate. Heavy aerosol loading in East Asia has significant radiative effects by reducing surface radiation, increasing the air temperature, and lowering the boundary layer height. A key factor is aerosol absorption, which is particularly strong in central China. This absorption can have a wide range of impacts such as creating an imbalance of aerosol radiative forcing at the top and bottom of the atmosphere, leading to inconsistent retrievals of cloud variables from space‐borne and ground‐based instruments. Aerosol radiative forcing can delay or suppress the initiation and development of convective clouds whose microphysics can be further altered by the microphysical effect of aerosols. For the same cloud thickness, the likelihood of precipitation is influenced by aerosols: suppressing light rain and enhancing heavy rain, delaying but intensifying thunderstorms, and reducing the onset of isolated showers in most parts of China. Rainfall has become more inhomogeneous and more extreme in the heavily polluted urban regions

    Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China

    Get PDF
    Context Land use/land cover change and other human activities contribute to the changing climate on regional and global scales, including the increasing occurrence of extreme precipitation events, but the relative importance of these anthropogenic factors, as compared to climatic factors, remains unclear. Objectives The main goal of this study was to determine the relative contributions of human-induced and climatic factors to the altered spatiotemporal patterns of heavy rainfall in China during the past several decades. Methods We used daily precipitation data from 659 meteorological stations in China from 1951 to 2010, climatic factors, and anthropogenic data to identify possible causes of the observed spatiotemporal patterns of heavy rainfall in China in the past several decades, and quantify the relative contributions between climatic and human-induced factors.This research was supported by the 973 Project ‘‘National Key Research and Development Program– Global Change and Mitigation Project: Global change risk of population and economic system: mechanisms and assessments’’ under Grant No. 201531480029, Ministry of Science and Technology of China, People’s Republic of China, the National Natural Science Foundation of Innovative Research Group Project ‘‘Earth Surface Process Model and Simulation’’ under Grant No. 41621061

    East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIR_(CPC))

    Get PDF
    Aerosols have significant and complex impacts on regional climate in East Asia. Cloud‐aerosol‐precipitation interactions (CAPI) remain most challenging in climate studies. The quantitative understanding of CAPI requires good knowledge of aerosols, ranging from their formation, composition, transport, and their radiative, hygroscopic, and microphysical properties. A comprehensive review is presented here centered on the CAPI based chiefly, but not limited to, publications in the special section named EAST‐AIRcpc concerning (1) observations of aerosol loading and properties, (2) relationships between aerosols and meteorological variables affecting CAPI, (3) mechanisms behind CAPI, and (4) quantification of CAPI and their impact on climate. Heavy aerosol loading in East Asia has significant radiative effects by reducing surface radiation, increasing the air temperature, and lowering the boundary layer height. A key factor is aerosol absorption, which is particularly strong in central China. This absorption can have a wide range of impacts such as creating an imbalance of aerosol radiative forcing at the top and bottom of the atmosphere, leading to inconsistent retrievals of cloud variables from space‐borne and ground‐based instruments. Aerosol radiative forcing can delay or suppress the initiation and development of convective clouds whose microphysics can be further altered by the microphysical effect of aerosols. For the same cloud thickness, the likelihood of precipitation is influenced by aerosols: suppressing light rain and enhancing heavy rain, delaying but intensifying thunderstorms, and reducing the onset of isolated showers in most parts of China. Rainfall has become more inhomogeneous and more extreme in the heavily polluted urban regions

    A preliminary study on the relationship between Arctic Oscillation and daily SLP variance in the Northern hemisphere during wintertime

    Get PDF
    In the present study, the authors investigated the relationship between the Arctic Oscillation (AO) and the high-frequency variability of daily sea level pressures in the Northern Hemisphere in winter (November through March), using NCEP/NCAR reanalysis datasets for the time period of 1948/49-2000/01. High-frequency signals are defined as those with timescales shorter than three weeks and measured in terms of variance, for each winter for each grid. The correlations between monthly mean AO index and high-frequency variance are conducted. A predominant feature is that several regional centers with high correlation show up in the middle to high latitudes. Significant areas include mid- to high-latitude Asia centered at Siberia, northern Europe and the middle-latitude North Atlantic east of northern Africa. Their strong correlations can also be confirmed by the singular value decomposition analysis of covariance between mean SLP and high-frequency variance. This indicates that the relationship of AO with daily Sea Level Pressure (SLP) is confined to some specific regions in association with the inherent atmospheric dynamics. In middle-latitude Asia, there is a significant (at the 95% level) trend of variance of –2.26% (10 yr)−1. Another region that displays a strong trend is the northwestern Pacific with a significant rate of change of 0.80% (10 yr)−1. If the winter of 1948/49, an apparent outlier, is excluded, a steady linear trend of +1.51% (10 yr)−1 shows up in northern Europe. The variance probability density functions (PDFs) are found to change in association with different AO phases. The changes corresponding to high and low AO phases, however, are asymmetric in these regions. Some regions such as northern Europe display much stronger changes in high AO years, whereas some other regions such as Siberia show a stronger connection to low AO conditions. These features are supported by ECMWF reanalysis data. However, the dynamical mechanisms involved in the AO-high frequency SLP variance connection have not been well understood, and this needs further study

    Spring Arctic Oscillation-western North Pacific connection in CMIP5 models

    No full text
    This study evaluates the simulation of the spring Arctic Oscillation (AO)-western North Pacific linkage based on the 16 state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5. The validation focuses on the predominant process connecting the spring AO with the East Asian summer monsoon: the formation and persistence of the spring AO-associated cyclonic anomaly over western North Pacific (WPCA) from spring to summer. The results indicate that 8 of 16 models can reproduce both the formation and persistence of the WPCA. Because the formation of the WPCA is directly related to the existence of the spring upper-level North Pacific atmospheric dipole (NPAD), the analyses suggest that a given model can reproduce the spring AO-associated NPAD if the model is capable of simulating the spring AO-associated deceleration of the subtropical westerly jet and the transient eddy activities around the westerly jet exit. Furthermore, the westerly jet anomalies are closely related to the simulated mean state of the westerly jet and the AO Pacific component, which could be further attributed to the simulated sea surface temperature biases over the equatorial Western Pacific
    corecore