11 research outputs found

    Experimental study into the behaviour of profiled composite walls under combined axial and thermal loadings

    Get PDF
    Profiled composite walls (PCWs) are regularly used in construction because they provide enhanced ductility, shear resistance and damage tolerance when compared to traditional reinforced concrete walls. Although much research has been conducted to understand the structural performance of PCWs at ambient temperature, studies into their performance at high temperatures remain limited. In this work, a comprehensive set of experiments has been conducted to investigate the performance of PCWs at both ambient and elevated temperatures. A heat source comprising of radiant burners and 1MN MTS machine were employed to deliver known and actively controlled thermal and structural boundary conditions on the PCW samples. The experiments were conducted to understand the effects of an incident heat flux when combined with loads. The results from this study have shown that (i) the axial load capacity of PCWs decreases as the temperature increases; (ii) the PCWs tends to exhibit ductile failure modes when cold but brittle failure at high temperature; (iii) due to thermal bowing, the failure plane of the PCWs subjected to one-side heating shifts closer to the heating source; and (iv) applying a load in an eccentric manner can compensate for the effect of temperature gradient

    Deformation capturing of concrete structures at elevated temperatures

    Get PDF
    Reliable deformation measurement is required for proper quantification of fire performance of concrete structures. Predictive capability of models for many critical properties, including Young鈥檚 moduli, stress-strain relationships and load-induced thermal strains, is first and foremost dependent on such reliable deformation capturing. This paper first presents a state-of-the-art review of existing methods for capturing deformation of concrete structures at elevated temperatures. Key merits, limitations and challenges associated with each measuring technique are discussed. It is shown that existing testing facilities and measuring instruments generally do not allow reliable direct measurement of deformation and strain of high-temperature concrete. As a result, the deformation has typically been captured either indirectly or outside the heated zones, inevitably introducing additional uncertainty and errors that are difficult to be adequately quantified. On the basis of that review, the paper details a new test set-up for reliable non-contact full-field deformation capturing of concrete structures at high temperatures using 3D Digital Image Correlation technique. Key features of the new setup that enable to successfully address major challenges of thermal boundary condition, thermal stability of speckle pattern, contrast of image and hot air movement are presented; together with evidences giving confidence to the reliability of such set-up. With its combined advantages of reliable full-field deformation capturing and thermal boundary conditions on test specimens, the new set-up allows to generate required reliable data on performance of concrete at elevated temperatures, thereby facilitating the development of effective rational fire design and analysis of concrete structures

    Plastic shrinkage cracking of concrete - Roles of osmotic suction

    Get PDF
    Plastic shrinkage cracking of concrete occurs when the stresses arising in the concrete, due to a combination of suction and restraints of deformation such as reinforcement or formwork, equal its strength. However, three different types of suctions should be distinguished, namely total, matric and osmotic suctions. Although the total suction comprises matric and osmotic suctions, it is often used interchangeably with matric suction, with the underlying unconfirmed assumption that either the osmotic suction or its effect is negligible. In this paper, after a discussion of the pore moisture suctions and strength of unsaturated early-age concrete, experimental investigations of the suctions arising in, and the tensile strength and shear strength of, fly ash mixed with solutions of different osmotic suctions are described. It was found that osmotic suction has negligible effect on the shear and tensile strength, and hence, by inference, the inter-particle stresses in the fly ash mixture and early-age concrete. This strongly suggests that the role played by osmotic suction in the plastic shrinkage cracking of concrete is minimal and, accordingly, justifies the focus of earlier researchers on matric suction only

    Effects of temperature and temperature gradient on concrete performance at elevated temperatures

    Get PDF
    To assure adequate fire performance of concrete structures, appropriate knowledge of and models for performance of concrete at elevated temperatures are crucial yet currently lacking, prompting further research. This article first highlights the limitations of inconsistent thermal boundary conditions in conventional fire testing and of using constitutive models developed based on empirical data obtained through testing concrete under minimised temperature gradients in modelling of concrete structures with significant temperature gradients. On that basis, this article outlines key features of a new test setup using radiant panels to ensure well-defined and reproducible thermal and mechanical loadings on concrete specimens. The good repeatability, consistency and uniformity of the thermal boundary conditions are demonstrated using measurements of heat flux and in-depth temperature of test specimens. The initial collected data appear to indicate that the compressive strength and failure mode of test specimens are influenced by both temperature and temperature gradient. More research is thus required to further quantify such effect and also to effectively account for it in rational performance-based fire design and analysis of concrete structures. The new test setup reported in this article, which enables reliable thermal/mechanical loadings and deformation capturing of concrete surface at elevated temperatures using digital image correlation, would be highly beneficial for such further research

    Stress鈥搒train鈥搕emperature relationship for concrete

    Get PDF
    When concrete structures are subjected to load and temperature simultaneously, it is essential to take into account the coupled effects between stress and expansion. However, due to incomplete understanding, such coupled effects have only been incorporated into current Eurocode 2 (EC2) stress鈥搒train curves by means of empirical correlations. These empirical correlations at different target temperatures are presented in tables that do not allow to clearly identify the correlation chosen to obtain the specific values. A further limitation of these tables is that the relationships cannot be used to evaluate the performance of concrete structures during the cooling phase. In this paper, a physically-based model of the coupled effects between stress and expansion is used to define the strain corresponding to the compressive strength, and thus to develop a simple formulation for stress鈥搒train鈥搕emperature relationship of concrete. The results are then compared with the EC2 stress鈥搒train鈥搕emperature table. The expression of stress鈥搒train鈥搕emperature relationship developed in this paper successfully agrees with the stress鈥搒train curves of concrete in EC2 used for the heating phase. More importantly, the proposed stress鈥搒train鈥搕emperature relationship can also be applicable for design purposes of concrete structures during the cooling phase

    Understanding the performance of profiled composite walls in fire

    No full text
    To understand the performance of structural elements subject to one-side heating, the combined effects of temperature and temperature gradient (or the non-uniform temperature increase) must be accurately considered in developing structural performance models. However, due to insufficient consideration of such effects, the direct application of current understanding of general structural performance at high temperature on structural elements like profiled composite walls (PCWs) seems insufficient because of the complex role that the different materials can have in the presence of significant temperature gradients. Therefore, more research is needed to understand the performance of these structural elements when subjected to temperature increase and temperature gradients. Only then, the performance of PCWs at high temperature can be appropriately addressed. This paper presents and verifies a structural performance model that can be used to analyse the performance of PCWs subjected to combined thermal and mechanical loadings. First, details of an analytical study are presented, including thermal stress calculation within inhomogeneous and composite cross-section by fully considering the effects of non-uniform stiffness, non-linear temperature gradient, shifting of the neutral axis, and the coupling effects between stress and thermal expansion. Second, previously published experimental results into the performance of PCWs subjected to combined mechanical loading and one-side heating are then used to verify the newly-developed analytical model. It is also argued that the methodology for stress and curvature calculation developed in this study can be used to assess the performance of any structural elements (PCWs included) subjected to one-side heating. (244 words)
    corecore