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Abstract 

To assure adequate fire performance of concrete structures, appropriate knowledge of and models 

for performance of concrete at elevated temperatures are crucial yet currently lacking, prompting 

further research. This paper first highlights the limitations of inconsistent thermal boundary 

conditions in conventional fire testing; and of using constitutive models developed based on 

empirical data obtained through testing concrete under minimised temperature gradients in 

modelling of concrete structures with significant temperature gradients. On that basis, the paper 

outlines key features of a new test setup using radiant panels to ensure well-defined and 

reproducible thermal and mechanical loadings on concrete specimens. The good repeatability, 

consistency and uniformity of the thermal boundary conditions are demonstrated using 

measurements of heat flux and in-depth temperature of test specimens. The initial collected data 

appear to indicate that the compressive strength and failure mode of test specimens are influenced 

by both temperature and temperature gradient. More research is thus required to further quantify 

such effect and also to effectively account for it in rational performance-based fire design and 

analysis of concrete structures. The new test setup reported in this paper, which enables reliable 

thermal/mechanical loadings and deformation capturing of concrete surface at elevated 

temperatures using digital image correlation, would be highly beneficial for such further research. 

 

Keywords 

concrete; elevated temperatures; heat flux; temperature gradient; strength; 

furnace; constitutive models. 
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1 Introduction 

The outbreak of fire in buildings and civil engineering structures can have 

disastrous consequences, including severe structural damage, significant loss of 

contents and possible loss of life. Adequate design for fire is thus an essential 

requirement in the design process and can be achieved by active, non-structural 

measures coupled with passive, structural means. The structural design objectives 

are to ensure that none of the three main fire-related limit states (being strength, 

insulation and fire integrity) is reached in less than a specified time, called fire-

resistance period.  

Being the most commonly used construction material, concrete has favourable 

inherent characteristics with respect to fire, including: low thermal conductivity, 

high heat capacity, non-combustibility, and no emission of smoke or toxic gases. 

High levels of fire resistance for traditional concrete structures can thus 

commonly be achieved by adopting certain member dimensions and cover to 

reinforcement (Australian Standard, 2009). Nevertheless, concrete also exhibits 

some less attractive aspects when exposed to elevated temperatures, including 

degradation of material properties and spalling (Dao, 2014; Khoury, 2000). 

Consequently, both the load-carrying and separating/insulating functions of 

concrete structures could be compromised.  

Despite extensive research in the past decades, our current knowledge of 

fundamental properties of concrete at elevated temperatures remains largely based 

on data from conventional tests in which the thermal loading experienced by 

concrete specimens remains difficult to be consistently controlled (Torero, 2014; 

Maluk et al., 2014; Maluk et al., 2012; Le, 2016). As a result, the effect of 

temperature and temperature gradients on the fire performance of concrete 

structures has not been adequately investigated. Accordingly, the influence of 

critical processes linked with temperature and its gradients, including thermal 

stresses, moisture transport and pore pressures, has not been properly addressed. 

This knowledge gap is critical considering the likely significant temperature 

gradients within concrete in fires (Torero, 2014; Dao, 2014). 

As a result, revised knowledge of fundamental properties of concrete at 

elevated temperatures is required. This is especially so in the context of current 

strong movement towards performance-based design for fire-related applications. 
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The success of such movement hinges firstly on the establishment of critical 

solution-enabling knowledge/tools, of which reliable numerical modelling is a 

critical component. Reliable numerical modelling, in turns, requires realistic 

constitutive models that should (i) reflect the true performance of concrete 

material at elevated temperatures and (ii) be based on reliable and well-

documented results from tests carried out under well-defined and well-controlled 

conditions. 

This paper first clearly highlights major shortcomings of “standardized” 

conventional tests for concrete in fire and accordingly limitations in currently 

available constitutive models for concrete at elevated temperatures. On that basis, 

key features of a newly-developed test system using radiant panels to impose 

consistent thermal and mechanical loadings on concrete specimens are reported. 

Initial results generated using the new setup are also presented, together with their 

discussion and suggestions of further work. 

2 Limitations of thermal boundary conditions on 

specimens in conventional test and their effects 

The increase of temperature in a test specimen is directly related to the incident 

heat flux on the specimen’s surface. When a conventional fire testing 

furnace/oven is used, the temperature evolution of the gases in the furnace is 

controlled (if thermocouples are used) and the heat-flux to a plate (if a plate 

thermometer is used). The net heat flux at the specimen’s surface results from a 

combination of radiation and convection between the furnace environment and the 

test specimen. This complex heat transfer process may be further complicated by 

the presence of other test specimens within the testing chamber. 

Through consideration of energy balance, the net heat flux at the specimen’s 

surface     
  can be approximated as (Maluk et al., 2016): 

'' 4 4

, . . . ( ) . .net g s g g c g s s sq F T h T T T        (1) 

where, Fg,s: view factor of the compartment to specimen surface; Tg, Ts: 

temperature of the gas and of specimen surface; αs: absorptivity of the gases inside 

furnace/oven; εg: emissivity of the gases; σ: the Stefan-Boltzmann constant; hc: 

average convective heat transfer coefficient of both radiation and convection 

modes of gas. 
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The evolution of     
  in time and space is thus highly complex, and 

accordingly very difficult to be controlled accurately and consistently. This 

inconsistent thermal loading imposed on test specimens has serious implications 

for the case of concrete with Biot number close to 1 (Figure 1), where proper 

characterisation of thermal boundary conditions is required (Torero, 2014; Bisby 

et al., 2013). In contrast, for the case of plasterboard with Biot number much 

greater than 1, Ts approximates Tg - enabling the simple adoption of the monitored 

gas temperature (Tg) as Ts on the specimen surface. For steel with Biot number 

much smaller than 1, a single temperature can be assumed for specimen, thereby 

significantly simplifying the problem. 

 

 

Figure 1. Typical temperature distribution for different materials. 

 

Poor definition of     
  makes it challenging to achieve reliable control of the 

temperature evolution as well as temperature gradient in test specimens in furnace 

tests. This has caused, at least partly, the following issues: 

a.  Significant variation in test results regarding both strength deterioration and 

spalling of concrete upon heating (Phan, 1996; Khoury et al., 1984): Different 

heating rates result in different heating histories. These are complex and 

generally undefined due to poor resolution of thermocouples and sensors. The 

undefined different heating histories in turn result in unquantifiable variability 

in the responses of test specimens. The significant variation in test results is 

likely also due in part to the inherent variation of concrete properties, and 

partly to possible experimental errors. In conventional tests, as a result of the 

limitations in thermal loading highlighted above, it is difficult to assess 

contributions from different sources of errors.  
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b.  Currently available constitutive models for concrete have largely been derived 

from standardized tests where temperature gradients within the concrete test 

specimens is intentionally minimised (Phan, 1996; Cheng et al., 2004), with the 

aim being to separate, as far as possible, the “material” effects from the 

“structural” effects (Khoury et al., 1984). Limitations of these constitutive 

models include: 

 Mass transfer processes affected by heat are different from typical real fire 

situations (with higher temperature gradients) because the very slow heating 

rates not only allow dissipation of heat through the specimen but also slow 

dissipation of water vapour with minimal pore pressure increase.  

 Components of the model linked with temperature gradients have not been 

explicitly addressed, nor have the couplings between different processes 

linked to temperature gradients (including moisture transport, vapour 

pressure and thermal gradient induced stresses). 

It is thus questionable whether such constitutive models developed based on 

tests under minimised temperature gradients are representative of concrete in 

structures with substantial temperature gradients.  

A research program is thus underway at The University of Queensland to re-

examine the thermal and mechanical performance of concrete at elevated 

temperatures by establishing well-defined and consistently-controlled thermal 

boundary conditions. This paper reports initial results of material testing of 

cylinder specimens, forming the basis for revision of constitutive models to better 

reflect the effects of temperature and temperature gradients. 

 

3 Experimental study 

3.1 Test specimens and materials 

Concrete cylinders of 100mmx200mm were adopted due to their common 

use for establishing uniaxial constitutive models of concrete in compression. The 

mix design was typical for concrete with 28-day compressive strength of 80 MPa, 

and is given in Table 1. All mixing and casting was done in accordance with 

relevant Australian standards (AS 1012.1:2014, 2014). A photo of moulds 

assembled on the vibrating table ready for casting is shown in Figure 3. 
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To ensure consistent moisture conditions, upon stripping from their moulds one 

day after casting, test specimens were cured in water at 27
o
C for four months, and 

then in the controlled room of 27°C and 70% relative humidity (Figure 4) for 

another three months until testing. The mass loss with time was monitored and 

found to become negligible after about 40 days, indicating that the test specimens 

had reached moisture equilibrium with the ambient air in the controlled room. 

 

Table 1. Concrete mix design. 

Constituents Quantity (/m
3
) 

10mm aggregate 925 (kg) 

Manufactured coarse sand 600 (kg) 

River fine sand 140 (kg) 

Cement 580 (kg) 

Water 193 (l) 

Superplasticiser 4.06 (l) 

 

Two series of specimens were prepared, including: 

 Series 1, of 9 specimens with internal thermocouples: Each specimen had 5 

thermocouples located on two radial lines at mid-height. Temperatures were 

measured at three depths (Figure 2): (i) at the specimen’s surface and (ii) 

centreline, and (iii) at 21 mm from the surface; this being the location of the 

average temperature (Le et al., 2015). The thermocouples used in this 

experiment were Type K with good moisture, chemical and abrasion 

resistance. The thermocouples were 20-gauge (0.965 mm diameter), grade, 

and solid wire. The thermocouples also contained high-temperature 

fibreglass braid single conductors and duplex insulation. The  maximum 

temperature of a single thermocouple is 705°C for continuous temperatures, 

and 870°C for a single reading. The specific limit of error is ±0.75% 

standard tolerances with temperatures from 0°C to 1260°C (Pyrosales, 

2014). To locate the thermocouples at intended positions, a welding wire 

frame (Figure 2) was used. 

 Series 2, of 33 specimens without thermocouples: Specimens were exposed 

to pre-determined schemes of heat flux boundary condition before testing to 

failure under compression. Due to good repeatability of heating and curing, 

temperature profiles in these specimens were assumed the same as 

corresponding specimens in Series 1. 
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Thus, Series 1 specimens with thermocouples were to provide 

temperature data from which required heating time to target temperature 

profile under a given heat flux level could be determined. Series 2 

specimens without thermocouples were to determine the load-deformation 

to assess the possible effects of different incident heat fluxes and thus of 

associated temperature and temperature gradients. 

 Three additional specimens without thermocouples were also cast and cured 

in water at 27
o
C until the age of 28 days for determination of the 28-day 

compressive strength of test concrete. 

 

                  

Figure 2. Locations of thermocouples in the cylinder concrete specimens. 

 

 

Figure 3. Photo of moulds for both series ready for casting on the vibrating table. 
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Figure 4. Test specimens in the controlled room of 27°C and 70% relative 

humidity. 

 

3.2 Radiant panel heating setup 

The heat flux incident on cylinder test specimens was actively controlled using 

a system of four high performance radiant heating elements (Figure 7). 

Calibration of heat flux was performed using a Schmidt-Boelter heat-flux sensor 

as follows: 

 The incident heat flux from each of the four panels was determined as a 

function of the distance between the panel and the target at the start of the 

testing, and this was repeated upon completion of the test series (Figure 5). 

The heat flux profiles produced by the four panels were essentially identical 

(Figure 6), proving that the consistency between the four panels was 

maintained throughout the testing. 

 Two radiant panels were used to determine the degree of uniformity of 

incident heat flux intensities on the cylinder specimen surface placed at 

different offset distances (Figure 5). The measured heat fluxes at the three 

locations (i.e. A, B and C) varied within by 5% for all distances, prompting 

a homogeneous thermal boundary condition around the curve surface of 

cylinder test specimen. 

 

3.3 Imposed heat fluxes and target temperatures 

Following the above calibration process, the incident heat flux intensities in this 

study were chosen within the typical range for building fires (Federation 

Internationale du Beton, 2007) as 20, 30, and 40 kW/m
2
 (denoted subsequently in 



10 

this paper as HF20, HF30 and HF40). Concrete specimens were first heated under 

a given incident heat flux level until the target average temperature, as recorded 

by thermocouples at 21 mm depth from the specimen surface, was reached 

(Figure 7). Besides ambient temperature, four target temperatures (150
o
C, 300

o
C, 

450
o
C and 600

o
C ) were chosen to capture the effects of major physico-chemical 

changes in concrete specimens at elevated temperatures (Khoury, 2000; Hertz, 

2005; Baker, 1996; Dao, 2014). Once a given target temperature was reached, the 

test specimens were loaded in compression at a rate of 0.25 mm/min until failure. 

 

        

Figure 5. Illustration of heat flux calibration process. 

 

 

Figure 6. Variation of heat flux with distance from the radiant panel surface. 
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Figure 7. Arrangement of four radiant heaters around cylinder test specimen. 

 

3.4 Mechanical loading preparation 

Figure 8 shows a schematic of the test setup for mechanical and thermal loading. 

Key features of the test setup include: 

 Loading crossheads below and above the test specimen: A water-cooling 

system was designed to maintain the temperature of the crossheads at less 

than 40°C during testing. The concrete blocks, as part of the top and bottom 

water-cooled attachments, were made of 100 MPa concrete and had 

dimensions of 127mmx95mm, acting as an insulator with similar thermal 

conductivity to that of test specimens. 

 A spherical seat ensured that uniaxial compression load was imposed. 

 A steel mesh of 5mm x 5mm grid was placed around the test specimens to 

protect the radiant panels from possible explosive spalling (Figure 7). 

 Since the radiant panels required around 5 minutes to reach their stable 

thermal state, the test specimens were initially covered in a hollow cylinder 

of 110mm in inner diameter and 210mm in height. This hollow cylinder was 

made of Rockwool with very low thermal conductivity and further wrapped 

in aluminium foil with high reflectivity to ensure no heating of test 

specimens during the initial warming-up period of the radiant panels. 
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Figure 8. Schematic illustration and photo of test setup. 

 

4 Results and discussion 

4.1 Spalling 

No spalling was observed during testing of all 39 concrete specimens in both 

Series 1 and Series 2 at elevated temperatures. Such no spalling was interesting 

considering the high concrete compressive strength of test specimens nearly 100 

MPa on test date and the significant rate of temperature increase within specimens 

of up to 30 °C/min in this study. Further work is therefore needed to shed more 

light onto underlying mechanisms for concrete spalling in fire. The highly 

consistent, reliable and repeatable thermal boundary conditions through using the 

radiant panel heating setup as demonstrated in this research (§3.2) would be 

beneficial in such study. 

4.2 Time evolution of in-depth temperature profiles 

The time evolution of in-depth concrete temperature profiles in three test 

specimens was determined for each of the three incident heat flux levels. A good 

degree of consistency was observed among the measured temperatures for each 

heat flux (Figure 9). The recorded temperatures along the two radial lines at 

corresponding depths also had good agreement, further confirming the uniform 

heat flux boundary condition. 
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a. For heat flux of 20 kW/m
2
. 

 

b. For heat flux of 30 kW/m
2
. 

 

c. For heat flux of 40 kW/m
2
. 

Figure 9. Temperature development at three depths of the three specimens heated 

by heat fluxes of 20, 30 and 40 kW/m
2
. 
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4.2 Colour change, water evaporation and failure mode of test 

specimens 

When subjected to high temperature, concrete specimens would experience colour 

change, cracking and possible spalling (Arioz, 2007). Figure 10 shows a typical 

change of colour due to the temperature increase in different layers concrete 

specimens in this study – when a concrete specimen heated by essentially uniform 

heat flux boundary conditions. The surface concrete of about 10 mm thick 

appeared much darker than concrete in the inner layer. In addition, network of fine 

cracks was observed on the surface of test specimens, especially for the case of 

incident heat flux of 40 kW/m
2
. 

 

  
Figure 10. Different colour change due to surface heating. 

 

Shortly after test specimen’s exposure to a given incident heat flux, water was 

observed coming out of the top and bottom surfaces of the specimen, as shown in 

Figure 11. Significant moisture accumulation was clearly observed on specimen’s 

top surface from around 15, 10 and 5 minutes after heating for incident heat flux 

of 20, 30 and 40 kW/m
2
, respectively. The specimen’s top surface was also seen 

to be completely dried after being heated for about 31, 22 and 17 minutes. 

 

   
Figure 11. Water migration/bleeding on top of the specimen surface. 
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Figure 12. Failure mode of specimens at: a. 150°C; b. 300°C; c. 450°C; d. 600°C. 

 

The typical failure modes of cylindrical concrete specimens at different target 

temperatures are given in Figure 12: 

 At target temperatures of 150°C and 450°C, reasonable well-formed cones 

at the two ends of cylindrical specimens were observed at failure; 

 However, at 300°C, specimens were completely broken into small pieces; 

 At 600°C, a well-formed cone was observed only at one end, together with 

vertical cracks running through the other end. 

Interestingly, the failure mode of all test specimens at a particular target 

temperature was observed to be consistently similar. It is hypothesised that such 

failure modes were influenced by thermal stresses associated with different heat 

fluxes and temperature gradients – Further research is needed to ascertain the 

underlying reasons for these observed failure modes. 

4.3 Strength of concrete at elevated temperatures 

The compressive strength at ambient temperature at 28 days and on test dates 

were 82.4 MPa and 97.4 MPa, respectively. For elevated temperatures, three 

cylinder specimens were tested for each combination of incident heat flux and 
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target temperature. The average compressive strengths at different target 

temperatures and incident heat fluxes, normalized against corresponding test-date 

strengths at ambient temperature, are plotted in Figure 13.  

 

 

Figure 13. Change of concrete compressive strength at different target 

temperatures and incident heat fluxes. 

 

 

Figure 14. Comparison of compressive strengths in current and comparable 

previous studies. 

 

It is evident from Figure 13 that at a given target temperature and heat flux, the 

variation of concrete strength was small. Compared to relevant results from 

comparable previous studies (Figure 14) (Hammer, 1995; Phan and Carino, 2001; 

Castillo and Durrani, 1990; Diederichs et al., 1988; Cheng et al., 2004), 

compressive strengths obtained in this work appear to follow similar trend, but 
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with considerable smaller variation. Besides the highly consistent casting and 

curing conditions for all specimens, such small variation was likely due to the 

consistent thermal loading, which was made possible by the newly-developed test 

setup in this study.  

Importantly, it can also be seen from Figure 13 that, at a given average elevated 

temperature, concrete strengths of test specimens subject to different incident heat 

fluxes differ significantly. Such a difference can be explained by linking 

temperature gradients, heating time, and corresponding physico-chemical 

processes within concrete specimens. At an average temperature of 300°C, for 

instance, the temperature ranges within test specimens due to heat fluxes of 20, 30 

and 40 kW/m
2
 were 233 to 431, 217 to 490, and 212 to 545°C, respectively. As a 

result, while significant strength recovery was observed in HF20 specimens due to 

increased surface forces arising from loss of absorbed water (Cheng et al., 2004), 

such recovery was modest in HF30 and HF40 specimens, possibly due mainly to 

the counteracting effect of decomposition of Ca(OH)2 (Khoury, 1992; Arioz, 

2007). 

Figure 13 accordingly indicates the potential influence of incident heat fluxes, 

and thus the associated temperature and temperature gradients, on concrete 

properties at elevated temperatures. The challenging question is to quantify such 

influence and also to develop methodology to effectively account for it in fire 

design and analysis of concrete structures. The test setup as reported in this paper, 

which allows to apply reliable thermal and mechanical loadings on specimens, 

would be highly beneficial for such further research.  

Importantly, the new setup also enables reliable non-contact full-field 

deformation capturing of concrete surface at elevated temperatures using digital 

image correlation – Such deformation capturing is typically not possible in 

conventional test setups (Le et al., 2017). The combined advantages of the above 

would allow to generate required reliable data, thereby enabling the development 

of effective rational fire design and analysis of concrete structures. 

 

5. Summary and conclusions 

This paper has highlighted the limitations of: (i) inconsistent thermal boundary 

conditions in conventional fire testing; and (ii) the adoption of constitutive models 
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developed based on tests under minimised temperature gradients in modelling of 

structures with significant temperature gradients. 

On that basis, details of a research program aiming to re-examine the fire 

performance of concrete structures, taking due account of temperature and 

temperature gradients, have been presented. The test setup for thermal and 

mechanical loading, using radiant panels to generate well-defined and 

reproducible heating regimes, has been described. The good repeatability, 

consistency and uniformity of the thermal boundary conditions on test cylinder 

specimens has also been demonstrated. 

Using this test setup, initial results on fundamental mechanical properties 

including compressive strengths of concrete specimens at various target 

temperatures under different heat flux intensities have been measured and 

reported. At a given target temperature, the measured compressive strengths and 

failure modes of test specimens have been observed to be influenced by the time-

history of thermal boundary conditions, implying an observable effect of 

temperature gradients on concrete properties at identical average elevated 

temperatures. Further research is ongoing to quantify this effect and also to 

develop methodologies to effectively account for it in rational performance-based 

fire design and analysis of concrete structures.  
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