2,739 research outputs found

    Gradual Enhancement of Stripe-Type Antiferromagnetism in Spin Ladder Material BaFe2_2S3_3 Under Pressure

    Full text link
    We report pressure-dependent neutron diffraction and muon spin relaxation/rotation measurements combined with first-principles calculations to investigate the structural, magnetic, and electronic properties of BaFe2_2S3_3 under pressure. The experimental results reveal a gradual enhancement of the stripe-type ordering temperature with increasing pressure up to 2.6 GPa and no observable change in the size of the ordered moment. The ab initio calculations suggest that the magnetism is highly sensitive to the Fe-S bond lengths and angles, clarifying discrepancies with previously published results. In contrast to our experimental observations, the calculations predict a monotonic reduction of the ordered moment with pressure. We suggest that the robustness of the stripe-type antiferromagnetism is due to strong electron correlations not fully considered in the calculations

    Human Dna2 is a nuclear and mitochondrial DNA maintenance protein

    Get PDF
    Dna2 is a highly conserved helicase/nuclease that in yeast participates in Okazaki fragment processing, DNA repair, and telomere maintenance. Here, we investigated the biological function of human Dna2 (hDna2). Immunofluorescence and biochemical fractionation studies demonstrated that hDna2 was present in both the nucleus and the mitochondria. Analysis of mitochondrial hDna2 revealed that it colocalized with a subfraction of DNA-containing mitochondrial nucleoids in unperturbed cells. Upon the expression of disease-associated mutant forms of the mitochondrial Twinkle helicase which induce DNA replication pausing/stalling, hDna2 accumulated within nucleoids. RNA interference-mediated depletion of hDna2 led to a modest decrease in mitochondrial DNA replication intermediates and inefficient repair of damaged mitochondrial DNA. Importantly, hDna2 depletion also resulted in the appearance of aneuploid cells and the formation of internuclear chromatin bridges, indicating that nuclear hDna2 plays a role in genomic DNA stability. Together, our data indicate that hDna2 is similar to its yeast counterpart and is a new addition to the growing list of proteins that participate in both nuclear and mitochondrial DNA maintenance

    Finite volume schemes for dispersive wave propagation and runup

    Get PDF
    Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.Comment: 41 pafes, 20 figures. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Epidermal Growth Factor Receptor (EGFR) is overexpressed in anaplastic thyroid cancer and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer

    Get PDF
    Purpose: No effective treatment options currently are available to patients with Anaplastic Thyroid Cancer (ATC), resulting in high mortality rates. Epidermal Growth Factor (EGF) has been shown to play a role in the pathogenesis of many types of cancer and its receptor (EGFR) provides an attractive target for molecular therapy. Experimental Design: The expression of EGFR was determined in ATC in vitro and in vivo and in human tissue arrays of ATC. We assessed the potential of the EGFR inhibitor gefitinib (“Iressa,” ZD1839) to inhibit EGFR activation in vitro and in vivo, inhibit ATC cellular proliferation, induce apoptosis and reduce the growth of ATC cells in vivo when administered alone and in combination with paclitaxel. Results: EGFR was overexpressed in ATC cell lines in vitro and in vivo and in human ATC specimens. Activation of EGFR by EGF was blocked by the addition of gefitinib. In vitro studies showed that gefitinib greatly inhibited cellular proliferation and induced apoptosis in ATC cell lines and slowed tumor growth in a nude mouse model of thyroid carcinoma cells injected subcutaneously. Conclusions: ATC cells consistently overexpress EGFR, rendering this receptor a potential target for molecular therapy. Gefitinib effectively blocks activation of EGFR by EGF, inhibits ATC cellular proliferation and induces apoptosis in vitro. Our in vivo results show that gefitinib has significant antitumor activity against ATC in a subcutaneous nude mouse tumor model and therefore is a potential candidate for human clinical trials

    Okazaki Fragment Processing-independent Role for Human Dna2 Enzyme during DNA Replication

    Get PDF
    Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G2 phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation
    corecore