7 research outputs found

    Catalyse organique énantiosélective par des oligomÚres bien définis de chitosane

    Get PDF
    The catalytic behaviour of size-defined chitosan oligomers has been evaluated for asymmetric aldol reactions. These oligomers were obtained from chitin, which is one of the most abundant naturally occurring polymers, as a renewable starting biomolecule. Thus, controlled depolymerization of chitin was carried out by acetolysis providing per-O-acetylated N-acetyl-α-D-glucosamine oligomers with a polymerization degree from 2 to 4. To investigate the influence of the aglycon moiety, we developed a Lewis acid-promoted glycosylation reactions under microwave irradiation. Thus, a catalytic amount of copper(II) triflate proved to be the most effective promoter for the activation of α-per-O-acetylated glucosamine oligomers, which are considered as poorly reactive substrates, to selectively obtain α-glycosylated compounds. This selectivity results from in situ isomerization of kinetic ÎČ products. Chitosan-based catalysts, which differ in the distribution pattern, were synthesized in a few steps. The most promising results were obtained with a chitobiose derivative, which efficiently catalyzed the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, in the presence of 4-nitrobenzoic acid as a co-catalyst, in water, providing the anti-adduct in high yield with good enantioselectivity (89% ee). In addition, this homogeneous organocatalyst can be reused in several cycles without loss of catalytic activity.Des oligomĂšres de taille dĂ©finie de chitosane ont Ă©tĂ© prĂ©parĂ©s et testĂ©s en tant qu'organocatalyseurs dans des rĂ©actions d'aldolisation Ă©nantiosĂ©lectives. Les prĂ©curseurs de ces catalyseurs sont obtenus en une seule Ă©tape par une rĂ©action d'acĂ©tolyse contrĂŽlĂ©e de la chitine, second polysaccharide le plus abondant. Une mĂ©thodologie reposant sur des rĂ©actions de glycosylation sous activation micro-ondes a Ă©tĂ© dĂ©veloppĂ©e afin de fonctionnaliser la position anomĂ©rique de ces oligomĂšres. Ainsi, le triflate de cuivre(II), utilisĂ© en quantitĂ© catalytique, s’est rĂ©vĂ©lĂ© ĂȘtre le promoteur le plus efficace pour l’activation de la glucosamine ou du chitobiose peracĂ©tylĂ©s de configuration α. La sĂ©lectivitĂ© α des produits glycosylĂ©s rĂ©sultent d’une isomĂ©risation in situ des produits cinĂ©tiques ÎČ. Des organocatalyseurs se diffĂ©renciant par leur partie aglycone et par leur degrĂ© de substitution ont Ă©tĂ© synthĂ©tisĂ©s en peu d’étapes. Les rĂ©sultats les plus intĂ©ressants ont Ă©tĂ© obtenus avec un dĂ©rivĂ© du chitobiose soluble en milieu aqueux. Nous avons montrĂ©, qu’en prĂ©sence d’un co-catalyseur acide, l’acide 4-nitrobenzoĂŻque, la rĂ©action entre la cyclohexanone et le 4-nitrobenzaldĂ©hyde, conduit Ă  l’adduit anti avec un bon excĂšs Ă©nantiomĂ©rique (89% ee). De plus, nous avons Ă©galement montrĂ© que ce catalyseur pouvait ĂȘtre rĂ©utilisĂ© dans plusieurs cycles catalytiques sans perte de sĂ©lectivitĂ©

    Enantioselective organocatalysis with size-defined chitosan oligomers

    No full text
    Des oligomĂšres de taille dĂ©finie de chitosane ont Ă©tĂ© prĂ©parĂ©s et testĂ©s en tant qu'organocatalyseurs dans des rĂ©actions d'aldolisation Ă©nantiosĂ©lectives. Les prĂ©curseurs de ces catalyseurs sont obtenus en une seule Ă©tape par une rĂ©action d'acĂ©tolyse contrĂŽlĂ©e de la chitine, second polysaccharide le plus abondant. Une mĂ©thodologie reposant sur des rĂ©actions de glycosylation sous activation micro-ondes a Ă©tĂ© dĂ©veloppĂ©e afin de fonctionnaliser la position anomĂ©rique de ces oligomĂšres. Ainsi, le triflate de cuivre(II), utilisĂ© en quantitĂ© catalytique, s’est rĂ©vĂ©lĂ© ĂȘtre le promoteur le plus efficace pour l’activation de la glucosamine ou du chitobiose peracĂ©tylĂ©s de configuration α. La sĂ©lectivitĂ© α des produits glycosylĂ©s rĂ©sultent d’une isomĂ©risation in situ des produits cinĂ©tiques ÎČ. Des organocatalyseurs se diffĂ©renciant par leur partie aglycone et par leur degrĂ© de substitution ont Ă©tĂ© synthĂ©tisĂ©s en peu d’étapes. Les rĂ©sultats les plus intĂ©ressants ont Ă©tĂ© obtenus avec un dĂ©rivĂ© du chitobiose soluble en milieu aqueux. Nous avons montrĂ©, qu’en prĂ©sence d’un co-catalyseur acide, l’acide 4-nitrobenzoĂŻque, la rĂ©action entre la cyclohexanone et le 4-nitrobenzaldĂ©hyde, conduit Ă  l’adduit anti avec un bon excĂšs Ă©nantiomĂ©rique (89% ee). De plus, nous avons Ă©galement montrĂ© que ce catalyseur pouvait ĂȘtre rĂ©utilisĂ© dans plusieurs cycles catalytiques sans perte de sĂ©lectivitĂ©.The catalytic behaviour of size-defined chitosan oligomers has been evaluated for asymmetric aldol reactions. These oligomers were obtained from chitin, which is one of the most abundant naturally occurring polymers, as a renewable starting biomolecule. Thus, controlled depolymerization of chitin was carried out by acetolysis providing per-O-acetylated N-acetyl-α-D-glucosamine oligomers with a polymerization degree from 2 to 4. To investigate the influence of the aglycon moiety, we developed a Lewis acid-promoted glycosylation reactions under microwave irradiation. Thus, a catalytic amount of copper(II) triflate proved to be the most effective promoter for the activation of α-per-O-acetylated glucosamine oligomers, which are considered as poorly reactive substrates, to selectively obtain α-glycosylated compounds. This selectivity results from in situ isomerization of kinetic ÎČ products. Chitosan-based catalysts, which differ in the distribution pattern, were synthesized in a few steps. The most promising results were obtained with a chitobiose derivative, which efficiently catalyzed the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, in the presence of 4-nitrobenzoic acid as a co-catalyst, in water, providing the anti-adduct in high yield with good enantioselectivity (89% ee). In addition, this homogeneous organocatalyst can be reused in several cycles without loss of catalytic activity

    Some nitrogen-rich heterocycles derivatives as potential explosives and propellants: A theoretical study

    No full text
    Four types of nitrogen-rich heterocycles substituted with -NO2, -NHNO2 and -C(NO2)3 explosophoric groups were explored as potential explosives and propellants materials. The calculated crystal density (ρ0)and the condensed phase heat of formation (ΔH·0f)for each of the twelve structures investigated shows that all these derivatives possess high (1.834-1.980 g cm-3)(ΔH·0f) and (605-2130 kJ kg-1) values. Interesting properties such as detonation velocity (D), pressure (P) and specific impulse (Isp) were calculated using the Kamlet-Jacobs method and ISPBKW thermochemical code. Detonation velocity and pressure in excess of 8.44 km s-1 and 32.87 GPa was obtained in all cases. Furthermore, trinitromethyl substituted derivatives shows performance exceeding that of HMX with an estimated D = 9.32-9.72 km s-1 and P = 40.61-43.82 GPa. Some -NO2 and -NHNO2 substituted derivatives were shown to be impact insensitive while retaining good detonation performance and thus are regarded as potential replacement for current RDX -based explosives. Finally, the calculated specific impulse (Isp between 248 and 270 s) of all investigated derivatives indicate that these energetic materials can be considered as possible ingredient in future rocket propellant compositions

    A Reliable Method for Predicting the Specific Impulse of Chemical Propellants

    No full text
    <div><p>ABSTRACT The specific impulse (Isp) is an important performance parameter that describes energy efficiency of propellant combustion and is intimately related to the rocket engine thrust. In this study, it was possible by using only two variables, i.e., the heat of reaction (Q) and the number of moles of gaseous reaction products per gram of propellant (Ng) calculated according to [H2O-CO2] arbitrary decomposition assumption and constants derived from the ISPBKW code to predict the specific impulse of more than 165 compositions belonging to virtually all classes of propellants such as monopropellants, single-base, double-base, triple-base, and cast modified double-base (CMDB) propellants, pseudo-propellants, composite propellants, liquid mono- and bipropellants, and finally hybrid propellants. Further analysis reveals that for C-H-N-O containing propellants, the specific impulse values estimated using the new method should not deviate more than 5% from the output of the ISPBKW thermochemical code.</p></div
    corecore