72 research outputs found

    Spectral and spatial information from a novel dual-wavelength full-waveform terrestrial laser scanner for forest ecology

    Get PDF
    The Salford Advanced Laser Canopy Analyser (SALCA) is an experimental terrestrial laser scanner designed and built specifically to measure the structural and biophysical properties of forest canopies. SALCA is a pulsed dual-wavelength instrument with co-aligned laser beams recording backscattered energy at 1063 and 1545 nm; it records full-waveform data by sampling the backscattered energy at 1 GHz giving a range resolution of 150 mm. The finest angular sampling resolution is 1 mrad and around 9 million waveforms are recorded over a hemisphere above the tripod-mounted scanner in around 110 minutes. Starting in 2010, data pre-processing and calibration approaches, data analysis, and information extraction methods, were developed and a wide range of field experiments conducted. The overall objective is to exploit the spatial, spectral and temporal characteristics of the data to produce ecologically useful information on forest and woodland canopies including leaf area index, plant area volume density and leaf biomass, and to explore the potential for tree species identification and classification. This paper outlines the key challenges in instrument development, highlights the potential applications for providing new data for forest ecology, and describes new avenues for exploring information-rich data from the next generation of TLS instruments like SALCA

    Angular reflectance of leaves with a dual-wavelength terrestrial lidar and its implications for leaf-bark separation and leaf moisture estimation

    Get PDF
    A new generation of multi-wavelength lidars offer the potential to measure the structure and biochemistry of vegetation simultaneously, using range resolved spectra indices to overcome the confounding effects in passive optical measurements. However, the reflectance of leaves depends on angle of incidence and if this dependence varies between wavelengths, the resulting spectral indices will also vary with angle of incidence, complicating their use in separating structural and biochemical effects in vegetation canopies. The SALCA dualwavelength terrestrial laser scanner (Salford Advanced Laser Canopy Analyser) was used to measure the angular dependence of reflectance for a range of leaves at the wavelengths used by the new generation of multi-wavelength lidars, 1063 nm and 1545nm, as used by SALCA, DWEL and the Optech Titan. The influence of the angle of incidence on the Normalised Difference Index of these wavelengths (NDI) was also assessed. The reflectance at both wavelengths depended on the angle of incidence, was non-Lambertian and could be well modelled as a cosine. The change in NDI with leaf angle of incidence was small compared to the observed difference in NDI between fresh and dry leaves and between leaf and bark. Therefore it is concluded that angular effects will not significantly impact leaf moisture retrievals or prevent leaf/bark separation for the wavelengths used in the new generation of 1063 nm and 1545 nm multi-wavelength lidars

    Non-intersecting leaf insertion algorithm for tree structure models

    Get PDF
    We present an algorithm and an implementation to insert broadleaves or needleleaves to a quantitative structure model according to an arbitrary distribution, and a data structure to store the required information efficiently. A structure model contains the geometry and branching structure of a tree. The purpose of the work is to offer a tool for making more realistic simulations with tree models with leaves, particularly for tree models developed from terrestrial laser scan (TLS) measurements. We demonstrate leaf insertion using cylinder-based structure models, but the associated software implementation is written in a way that enables the easy use of other types of structure models. Distributions controlling leaf location, size and angles as well as the shape of individual leaves are user-definable, allowing any type of distribution. The leaf generation process consist of two stages, the first of which generates individual leaf geometry following the input distributions, while in the other stage intersections are prevented by doing transformations when required. Initial testing was carried out on English oak trees to demonstrate the approach and to assess the required computational resources. Depending on the size and complexity of the tree, leaf generation takes between 6 and 18 minutes. Various leaf area density distributions were defined, and the resulting leaf covers were compared to manual leaf harvesting measurements. The results are not conclusive, but they show great potential for the method. In the future, if our method is demonstrated to work well for TLS data from multiple tree types, the approach is likely to be very useful for 3D structure and radiative transfer simulation applications, including remote sensing, ecology and forestry, among others

    Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks

    Get PDF
    The Salford Advanced Laser Canopy Analyser (SALCA) is a unique dual-wavelength full-waveform terrestrial laser scanner (TLS) designed to measure forest canopies. This paper has two principle objectives, first to present the detailed analysis of the radiometric properties of the SALCA instrument, and second, to propose a novel method to calibrate the recorded intensity to apparent reflectance using a neural network approach. The results demonstrate the complexity of the radiometric response to range, reflectance, and laser temperature and show that neural networks can accurately estimate apparent reflectance for both wavelengths (root mean square error (RMSE) of 0.072 and 0.069 for the 1063 nm and 1545 nm wavelengths respectively). The trained network can then be used to calibrate full hemispherical scans in a forest environment, providing new opportunities for quantitative data analysis

    Landscape composition and spatial prediction of alveolar echinococcosis in Southern Ningxia, China

    Get PDF
    Background: Alveolar echinococcosis (AE) presents a serious public health challenge within China. Mass screening ultrasound surveys can detect pre-symptomatic AE, but targeting areas identified from hospital records is inefficient regarding AE. Prediction of undetected or emerging hotspots would increase detection rates. Voles and lemmings of the subfamily Arvicolinae are important intermediate hosts in sylvatic transmission systems. Their populations reach high densities in productive grasslands where food and cover are abundant. Habitat availability is thought to affect arvicoline population dynamic patterns and definitive host-intermediate host interactions. Arvicoline habitat correlates with AE prevalence in Western Europe and southern Gansu Province, China. Methods and Findings: Xiji County, Ningxia Hui Autonomous Region, borders southern Gansu. The aims of this study were to map AE prevalence across Xiji and test arvicoline habitat as a predictor. Land cover was mapped using remotely sensed (Landsat) imagery. Infection status of 3,205 individuals screened in 2002-2003 was related, using generalised additive mixed models, to covariates: gender; farming; ethnicity; dog ownership; water source; and areal cover of mountain pasture and lowland pasture. A Markov random field modelled additional spatial variation and uncertainty. Mountain pasture and lowland pasture were associated with below and above average AE prevalence, respectively. Conclusions: Low values of the normalised difference vegetation index indicated sub-optimality of lowland pasture for grassland arvicolines. Unlike other known endemic areas, grassland arvicolines probably did not provide the principal reservoir for Echinococcus multilocularis in Xiji. This result is consistent with recent small mammal surveys reporting low arvicoline densities and high densities of hamsters, pikas and jerboas, all suitable intermediate hosts for E. multilocularis, in reforested lowland pasture. The risk of re-emergence is discussed. We recommend extending monitoring to: southern Haiyuan County, where predicted prevalence was high; southern Xiji County, where prediction uncertainty was high; and monitoring small mammal community dynamics and the infection status of dogs

    Landscape Composition and Spatial Prediction of Alveolar Echinococcosis in Southern Ningxia, China

    Get PDF
    In humans, larvae of the fox tapeworm Echinococcus multilocularis typically infect the liver where metastasis, calcification and necrosis cause the zoonotic disease alveolar echinococcosis (AE). Treatment is difficult. Early detection greatly increases patient life expectancy but under-detection is a problem. Understanding the ecological conditions that elevate AE risk would help identify at-risk communities. Voles and lemmings of the subfamily Arvicolinae are important intermediate hosts in most AE endemic areas, and arvicoline habitat has been proposed as a predictor of AE risk. Using a model of spatial autocorrelation with land cover identified from satellite remote sensing imagery, we identified AE hotspots in southern Ningxia Hui Autonomous Region (NHAR), China. Hotspots were not located near optimal arvicoline habitats. Thus, non-arvicolines provide principal reservoirs in NHAR and the range of ecological conditions sustaining E. multilocularis transmission in China is greater than previously thought. We also show: social factors explain higher prevalence in females than males; dogs increase infection risk; and we argue that water source quality is important via interaction with other environmental variables. Our map of AE prevalence represents the current state-of-the-art regarding the spatial distribution of AE in southern NHAR and provides an important baseline for future monitoring programs there

    Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer

    Get PDF
    SP1049C is a novel anticancer agent containing doxorubicin and two nonionic pluronic block copolymers. In preclinical studies, SP1049C demonstrated increased efficacy compared to doxorubicin. The objectives of this first phase I study were to determine the toxicity profile, dose-limiting toxicity, maximum tolerated dose and pharmacokinetic profile of SP1049C, and to document any antitumour activity. The starting dose was 5 mg m−2 (doxorubicin content) as an intravenous infusion once every 3 weeks for up to six cycles. A total of 26 patients received 78 courses at seven dose levels. The dose-limiting toxicity was myelosuppression and DLT was reached at 90 mg m−2. The maximum tolerated dose was 70 mg m−2 and is recommended for future trials. The pharmacokinetic profile of SP1049C showed a slower clearance than has been reported for conventional doxorubicin. Evidence of antitumour activity was seen in some patients with advanced resistant solid tumours. Phase II trials with this agent are now warranted to further define its antitumour activity and safety profile

    How contemporary bioclimatic and human controls change global fire regimes

    Get PDF
    Anthropogenically driven declines in tropical savannah burnt area have recently received attention due to their effect on trends in global burnt area. Large-scale trends in ecosystems where vegetation has adapted to infrequent fire, especially in cooler and wetter forested areas, are less well understood. Here, small changes in fire regimes can have a substantial impact on local biogeochemistry. To investigate trends in fire across a wide range of ecosystems, we used Bayesian inference to quantify four primary controls on burnt area: fuel continuity, fuel moisture, ignitions and anthropogenic suppression. We found that fuel continuity and moisture are the dominant limiting factors of burnt area globally. Suppression is most important in cropland areas, whereas savannahs and boreal forests are most sensitive to ignitions. We quantify fire regime shifts in areas with more than one, and often counteracting, trends in these controls. Forests are of particular concern, where we show average shifts in controls of 2.3–2.6% of their potential maximum per year, mainly driven by trends in fuel continuity and moisture. This study gives added importance to understanding long-term future changes in the controls on fire and the effect of fire trends on ecosystem function

    Climate Change and the Geographic Distribution of Infectious Diseases

    Get PDF
    Our ability to predict the effects of climate change on the spread of infectious diseases is in its infancy. Numerous, and in some cases conflicting, predictions have been developed, principally based on models of biological processes or mapping of current and historical disease statistics. Current debates on whether climate change, relative to socioeconomic determinants, will be a major influence on human disease distributions are useful to help identify research needs but are probably artificially polarized. We have at least identified many of the critical geophysical constraints, transport opportunities, biotic requirements for some disease systems, and some of the socioeconomic factors that govern the process of migration and establishment of parasites and pathogens. Furthermore, we are beginning to develop a mechanistic understanding of many of these variables at specific sites. Better predictive understanding will emerge in the coming years from analyses regarding how these variables interact with each other
    corecore