79 research outputs found

    Comparative analysis of an experimental subcellular protein localization assay and in silico prediction methods

    Get PDF
    The subcellular localization of a protein can provide important information about its function within the cell. As eukaryotic cells and particularly mammalian cells are characterized by a high degree of compartmentalization, most protein activities can be assigned to particular cellular compartments. The categorization of proteins by their subcellular localization is therefore one of the essential goals of the functional annotation of the human genome. We previously performed a subcellular localization screen of 52 proteins encoded on human chromosome 21. In the current study, we compared the experimental localization data to the in silico results generated by nine leading software packages with different prediction resolutions. The comparison revealed striking differences between the programs in the accuracy of their subcellular protein localization predictions. Our results strongly suggest that the recently developed predictors utilizing multiple prediction methods tend to provide significantly better performance over purely sequence-based or homology-based predictions

    Combined hepatic and renal transplantation in primary hyperoxaluria type I: Clinical report of nine cases

    Full text link
    Purpose and patients and methodsThe purpose of this article is to report the experience of three centers with combined hepatic and renal transplantation for pyridoxine-resistant primary hyperoxaluria type I (alanine:glyoxylate aminotransferase [EC 2.6.1.44] deficiency), with particular emphasis on the selection criteria and timing of the operation. Nine patients with this inherited disease were treated by combined hepatic and renal transplantation. The former replaces the enzyme-deficient organ while the latter replaces the functionally affected organ.ResultsOne patient with gross systemic oxalosis died in the immediate postoperative period and another died 8 weeks postoperatively of a generalized cytomegalovirus infection, having shown evidence of biochemical correction. One patient with particularly severe osteodystrophy at the time of the operation died 14 months postoperatively from renal failure due to progressive calcium oxalate nephrocalcinosis involving the transplanted kidney, plus thromboembolic disease. He also had very extensive systemic oxalosis. An additional patient with severe osteodystrophy died 9 months postoperatively. One patient developed hyper-rejection of the kidney and died later of gastrointestinal hemorrhage. The four long-term survivors (22 to 38 months) have remained asymptomatic from the standpoint of their renal disease, with resolution of any manifestations of systemic oxalosis that they may have had. They are either employed or continuing their education.ConclusionsA prolonged period of end-stage renal failure treated by dialysis regimens that are suitable for non-hyperoxaluric renal failure and extensive systemic oxalosis, particularly oxalotic osteodystrophy, are poor prognostic features. We propose that hepatic transplantation should be considered as definitive treatment before end-stage renal failure develops. This should be supplemented by renal transplantation with vigorous pre- and perioperative hemodialysis to deplete the body stores of oxalate. Although some authorities would reserve hepatic transplantation for patients in whom renal transplantation has failed, we suggest that combined liver and kidney transplantation is appropriate in patients who have never had a renal graft. Furthermore, the time has come to consider hepatic transplantation before any irreversible renal damage has occurred in these patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29475/1/0000561.pd

    Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana

    Full text link
    At least two glyoxylate aminotransferases are hypothesized to participate in the steps of photorespiration located in peroxisomes. Until recently, however, genes encoding these enzymes had not been identified. We describe the isolation and characterization of an alanine : glyoxylate aminotransferase ( AGT1 , formerly AGT ) cDNA from Arabidopsis thaliana . Southern blot analysis confirmed that Arabidopsis AGT1 is encoded by a single gene. Homologs of this class IV aminotransferase are also known in other plants, animals, and methylotrophic bacteria, suggesting an ancient evolutionary origin of this enzyme. AGT1 transcripts were present in all tissues of Arabidopsis , but were most abundant in green, leafy tissues. Purified, recombinant Arabidopsis AGT1 expressed in Escherichia coli catalyzed three transamination reactions using the following amino donor : acceptor combinations: alanine : glyoxylate, serine : glyoxylate, and serine : pyruvate. AGT1 had the highest specific activity with the serine : glyoxylate transamination, and apparent K m measurements indicate that this is the preferred in vivo reaction. In vitro import experiments and subcellular fractionations localized AGT1 to peroxisomes. Sequence analysis of the photorespiratory sat mutants revealed a single nucleotide substitution in the AGT1 gene from these plants. This transition mutation is predicted to result in a proline-to-leucine substitution at residue 251 of AGT1. When this mutation was engineered into the recombinant AGT1 protein, enzymatic activity using all three donor : acceptor pairs was abolished. We conclude that Arabidopsis AGT1 is a peroxisomal photorespiratory enzyme that catalyzes transamination reactions with multiple substrates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73264/1/j.1365-313x.2001.00961.x.pd

    Alternative splicing and differential subcellular localization of the rat FGF antisense gene product

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GFG/NUDT is a nudix hydrolase originally identified as the product of the fibroblast growth factor-2 antisense (FGF-AS) gene. While the FGF-AS RNA has been implicated as an antisense regulator of FGF-2 expression, the expression and function of the encoded GFG protein is largely unknown. Alternative splicing of the primary FGF-AS mRNA transcript predicts multiple GFG isoforms in many species including rat. In the present study we focused on elucidating the expression and subcellular distribution of alternatively spliced rat GFG isoforms.</p> <p>Results</p> <p>RT-PCR and immunohistochemistry revealed tissue-specific GFG mRNA isoform expression and subcellular distribution of GFG immunoreactivity in cytoplasm and nuclei of a wide range of normal rat tissues. FGF-2 and GFG immunoreactivity were co-localized in some, but not all, tissues examined. Computational analysis identified a mitochondrial targeting sequence (MTS) in the N-terminus of three previously described rGFG isoforms. Confocal laser scanning microscopy and subcellular fractionation analysis revealed that all rGFG isoforms bearing the MTS were specifically targeted to mitochondria whereas isoforms and deletion mutants lacking the MTS were localized in the cytoplasm and nucleus. Mutation and deletion analysis confirmed that the predicted MTS was necessary and sufficient for mitochondrial compartmentalization.</p> <p>Conclusion</p> <p>Previous findings strongly support a role for the FGF antisense RNA as a regulator of FGF2 expression. The present study demonstrates that the antisense RNA itself is translated, and that protein isoforms resulting form alternative RNA splicing are sorted to different subcellular compartments. FGF-2 and its antisense protein are co-expressed in many tissues and in some cases in the same cells. The strong conservation of sequence and genomic organization across animal species suggests important functional significance to the physical association of these transcript pairs.</p

    Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with 99mTc- and 123I-labelled probes

    Get PDF
    The study serves to optimise conditions for multi-pinhole SPECT small animal imaging of (123)I- and (99m)Tc-labelled radiopharmaceuticals with different distributions in murine heart and brain and to investigate detection and dose range thresholds for verification of differences in tracer uptake.A Triad 88/Trionix system with three 6-pinhole collimators was used for investigation of dose requirements for imaging of the dopamine D(2) receptor ligand [(123)I]IBZM and the cerebral perfusion tracer [(99m)Tc]HMPAO (1.2-0.4 MBq/g body weight) in healthy mice. The fatty acid [(123)I]IPPA (0.94 +/- 0.05 MBq/g body weight) and the perfusion tracer [(99m)Tc]sestamibi (3.8 +/- 0.45 MBq/g body weight) were applied to cardiomyopathic mice overexpressing the prostaglandin EP(3) receptor.In vivo imaging and in vitro data revealed 45 kBq total cerebral uptake and 201 kBq cardiac uptake as thresholds for visualisation of striatal [(123)I]IBZM and of cardiac [(99m)Tc]sestamibi using 100 and 150 s acquisition time, respectively. Alterations of maximal cerebral uptake of [(123)I]IBZM by >20% (116 kBq) were verified with the prerequisite of 50% striatal of total uptake. The labelling with [(99m)Tc]sestamibi revealed a 30% lower uptake in cardiomyopathic hearts compared to wild types. [(123)I]IPPA uptake could be visualised at activity doses of 0.8 MBq/g body weight.Multi-pinhole SPECT enables detection of alterations of the cerebral uptake of (123)I- and (99m)Tc-labelled tracers in an appropriate dose range in murine models targeting physiological processes in brain and heart. The thresholds of detection for differences in the tracer uptake determined under the conditions of our experiments well reflect distinctions in molar activity and uptake characteristics of the tracers
    corecore