42 research outputs found

    Refining epigenetic prediction of chronological and biological age

    Get PDF
    Background Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture. Methods First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women’s Health Initiative study). Results Through the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10−52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10−60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations. Conclusions The integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age

    Blood-based epigenome-wide analyses of cognitive abilities

    Get PDF
    BACKGROUND: Blood-based markers of cognitive functioning might provide an accessible way to track neurodegeneration years prior to clinical manifestation of cognitive impairment and dementia. RESULTS: Using blood-based epigenome-wide analyses of general cognitive function, we show that individual differences in DNA methylation (DNAm) explain 35.0% of the variance in general cognitive function (g). A DNAm predictor explains ~4% of the variance, independently of a polygenic score, in two external cohorts. It also associates with circulating levels of neurology- and inflammation-related proteins, global brain imaging metrics, and regional cortical volumes. CONCLUSIONS: As sample sizes increase, the ability to assess cognitive function from DNAm data may be informative in settings where cognitive testing is unreliable or unavailable. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02596-5

    Epigenetic scores for the circulating proteome as tools for disease prediction

    Get PDF
    Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNA methylation (DNAm) signatures of the circulating proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% and 58% of the variance in protein levels after adjusting for known protein quantitative trait loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample (Generation Scotland; n = 9537) and relating them to incident morbidities over a follow-up of 14 years, we uncovered 137 EpiScore-disease associations. These associations were largely independent of immune cell proportions, common lifestyle and health factors, and biological aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top biomarker associations from proteome-wide assessments of diabetes. These EpiScores for protein levels can therefore be a valuable resource for disease prediction and risk stratification

    Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health

    Get PDF
    Characterising associations between the methylome, proteome and phenome may provide insight into biological pathways governing brain health. Here, we report an integrated DNA methylation and phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association studies of 4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein associations after adjustment for multiple testing. These are independent of known genetic protein quantitative trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein are then performed in relation to 15 neurological traits (N = 1,065), identifying 405 associations between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain health. The epigenetic and proteomic markers we identify are pertinent to understanding and stratifying brain health

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society
    corecore