60 research outputs found

    High application rates of biochar to mitigate N2O emissions from a N-fertilized tropical soil under warming conditions.

    Get PDF
    Biochar application has been suggested as a strategy to decrease nitrous oxide emissions from agricultural soils while increasing soil C stocks, especially in tropical regions. Climate change, specifically increasing temperatures, will affect soil environmental conditions and thereby directly influence soil N2O fluxes

    A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm

    Get PDF
    The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead, the rather short period when soils are not frozen is the single main factor limiting N turnover. High gross rates of mineral N cycling are thus facilitated by released protection of organic matter in active layers with nitrification gaining particular importance in N-rich soils, such as organic soils without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is confirmed by the rich functional microbial community which can be found both in active and permafrost layers. The high rates of N cycling and soil N availability are supported by biological N fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas. In line with high soil mineral N production, recent plant physiological research indicates a higher importance of mineral plant N nutrition than previously thought. Our synthesis shows that mineral N production and turnover rates in active layers of permafrost-affected soils do not generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This new paradigm suggests larger permafrost N climate feedbacks than assumed previously

    Disentangling gross Nâ‚‚O production and consumption in soil

    Get PDF
    The difficulty of measuring gross N₂O production and consumption in soil impedes our ability to predict N₂O dynamics across the soil-atmosphere interface. Our study aimed to disentangle these processes by comparing measurements from gas-flow soil core (GFSC) and 15^{15}N₂O pool dilution (15^{15}N₂OPD) methods. GFSC directly measures soil N₂O and N₂ fluxes, with their sum as the gross N₂O production, whereas 15^{15}N₂OPD involves addition of 15^{15}N₂O into a chamber headspace and measuring its isotopic dilution over time. Measurements were conducted on intact soil cores from grassland, cropland, beech and pine forests. Across sites, gross N₂O production and consumption measured by 15^{15}N₂OPD were only 10% and 6%, respectively, of those measured by GFSC. However, 15^{15}N₂OPD remains the only method that can be used under field conditions to measure atmospheric N₂O uptake in soil. We propose to use different terminologies for the gross N₂O fluxes that these two methods quantified. For 15^{15}N₂OPD, we suggest using ‘gross N₂O emission and uptake’, which encompass gas exchange within the 15^{15}N₂O-labelled, soil air-filled pores. For GFSC, ‘gross N₂O production and consumption’ can be used, which includes both N₂O emitted into the soil air-filled pores and N₂O directly consumed, forming N₂, in soil anaerobic microsites

    The ScaleX campaign: scale-crossing land-surface and boundary layer processes in the TERENO-preAlpine observatory

    Get PDF
    Augmenting long-term ecosystem-atmosphere observations with multidisciplinary intensive campaigns aims at closing gaps in spatial and temporal scales of observation for energy- and biogeochemical cycling, and at stimulating collaborative research. ScaleX is a collaborative measurement campaign, co-located with a long-term environmental observatory of the German TERENO (TERrestrial ENvironmental Observatories) network in mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land-surface atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated on a small number of locations

    East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure

    Get PDF
    Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infected cattle revealed large numbers of CD3- and CD20-negative intralesional mononuclear cells. Due to this finding, we hypothesized that macrophages play an important role in Theileria parva disease pathogenesis. Data presented here demonstrates that terminal ECF in both Holstein and Boran cattle is largely due to multisystemic histiocytic responses and resultant tissue damage. Furthermore, the combination of these histologic changes with the clinical findings, including lymphadenopathy, prolonged pyrexia, multi-lineage leukopenia, and thrombocytopenia is consistent with macrophage activation syndrome. All animals that succumbed to infection exhibited lymphohistiocytic vasculitis of small to medium caliber blood and lymphatic vessels. In pulmonary, lymphoid, splenic and hepatic tissues from Holstein cattle, the majority of intralesional macrophages were positive for CD163, and often expressed large amounts of IL-17. These data define a terminal ECF pathogenesis in which parasite-driven lymphoproliferation leads to secondary systemic macrophage activation syndrome, mononuclear vasculitis, pulmonary edema, respiratory failure and death. The accompanying macrophage phenotype defined by CD163 and IL-17 is presented in the context of this pathogenesis

    Effects of slurry acidification on soil N<sub>2</sub>O fluxes and denitrification.

    No full text
    Background: Reductions of ammonia volatilization resulting from slurry applications to intensively managed grassland may be achieved via slurry acidification. However, it remains uncertain if this may result in pollution swapping, that is, due to reduced ammonia volatilization and increased soil N availability, emission of nitrous oxide from soils may increase. Aims: In this study, we compared control (no fertilizer) and slurry fertilized grassland treatments [not acidified (S) and acidified (AS)] to assess whether slurry acidification results in changes of soil N availability, denitrification potential and activity as well as soil fluxes of nitrous oxide. Methods: The study was carried out in a montane grassland system in southern Germany, and parameters were followed over a 43-days period with continuous measurements of soil GHG fluxes and biweekly measurements of microbial and soil parameters preceding and following two fertilizing events. Results: Over the entire observation period cumulative N2O emissions were significantly elevated for treatments receiving slurry applications, with differences between acidified and non-acidified slurry treatments being overall insignificant. Transcripts of the nirK type nitrite reductase showed significantly higher numbers in soils of the AS treatment. While soil potential denitrification rates (PDR) did not differ between treatments, there was a strong tendency of increased PDRs for the AS treatment. Conclusions: Against expectation, we did not find that application of AS affects PDR or soil N2O emissions significantly, though in tendency higher rates of soil N2O emissions as well as higher potential denitrification rates were found in treatments receiving acidified slurry as compared to the slurry only treatment. Our results indicate that longer observation periods and given the significant spatial variability, higher numbers of replicates are needed, to finally assess if slurry application indeed results in increased soil denitrification activity, soil N2O production and soil-atmosphere N2O emissions

    N2-fixing black locust intercropping improves ecosystem nutrition at the vulnerable semi-arid Loess Plateau region, China

    No full text
    The Loess Plateau in northwestern China constitutes one of the most vulnerable semi-arid regions in the world due to long-term decline in forest cover, soil nutrient depletion by agricultural use, and attendant soil erosion. Here, we characterize the significance of N-fixing Robinia pseudoacacia L. and non-N-fixing Juglans regia L. for improving nutrient availability and water retention in soil by comparing a range of biological and physicochemical features in monoculture and mixed plantations of both species. We found that N-fixing Robinia facilitates the nitrogen and phosphorus composition of non-N-fixing Juglans in the mixed stand as a consequence of improved soil nutrient availability, evident as higher levels of nitrogen and labile carbon compared to mono-specific stands. This demonstrates that intercropping N-fixing Robinia with non-N-fixing woody plants can greatly improve soil carbon and nitrogen bioavailability as well as whole-plant nutrition and can potentially mediate water retention with additional sequestration of soil organic carbon in the range of 1 t C ha year. Thus, intercropping N-fixing woody species (e.g. Robinia pseudoacacia or Hippophae rhamnoides L.) with locally important non-N-fixing tree and shrub species should be considered in afforestation strategies for landscape restoration

    Alder-induced stimulation of soil gross nitrogen turnover in a permafrost-affected peatland of Northeast China.

    No full text
    For the prediction of permafrost nitrogen (N) climate feedbacks, a better process-based understanding of the N cycle in permafrost ecosystems is urgently needed. Therefore, we characterized and quantified soil organic matter, gross soil microbial ammonification and nitrification and soil-atmosphere exchange of nitrous oxide (N2O) of boreal permafrost ecosystems on the southern edge of the Eurasian permafrost area in situ. Soil organic carbon (SOC) and total nitrogen (TN) stocks (top 0.5 m) of tree-free lowland peatland (LP) soils exceeded those of gravel-rich upland forest (UF) soils by an order of magnitude. Nuclear magnetic resonance spectroscopy revealed more recalcitrant organic matter at greater depth and more bioavailable organic matter substrates in upper peat horizons. In line with this result, gross ammonification and nitrification generally decreased with increasing sampling depth. Gross rates of mineral N turnover in active layers were comparable to those of temperate ecosystems. Despite substantial gross ammonification, the low nitrification:ammonification ratios and negligible soil N2O emissions depicted however a closed N cycle at UF and LP characterized by N limitation. In strong contrast, the lowland peat soils underneath alder trees (LA), being associated with diazotrophic bacteria in root nodules, showed an accelerated N turnover with very high gross rates of ammonification (3.1 g N m−2 d−1) and nitrification (0.5 g N m−2 d−1), exceeding those of UF and LP soils by an order of magnitude. This was accompanied by substantial N2O emissions comparable to temperate agricultural systems or tropical forests. The increase in gross soil microbial ammonification and nitrification was most pronounced in the rooted soil layer, where N inputs from biological N fixation almost doubled TN concentrations and halved SOC:TN ratios. The frozen ground of LA contained strongly increased ammonium concentrations that might be prone to release upon thaw via subsequent nitrification. This study shows that alder forests that further expand on permafrost-affected peatlands with global change create hot spots of soil mineral N turnover, thereby potentially enhancing permafrost N climate feedbacks via N2O emissions
    • …
    corecore