6 research outputs found

    Automatic blocking for complex three-dimensional configurations

    Get PDF
    A new blocking technique for complex three-dimensional configurations is described. This new technique is based upon the concept of an abstraction, or squared-up representation, of the configuration and the associated grid. By allowing the user to describe blocking requirements in natural terms (such as 'wrap a grid around this leading edge' or 'make all grid lines emanating from this wall orthogonal to it'), users can quickly generate complex grids around complex configurations, while still maintaining a high level of control where desired. An added advantage of the abstraction concept is that once a blocking is defined for a class of configurations, it can be automatically applied to other configurations of the same class, making the new technique particularly well suited for the parametric variations which typically occur during design processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations. In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly more expensive than the generation of an unstructured grid for the same configuration

    A technique for optimizing grid blocks

    Get PDF
    A new technique for automatically combining grid blocks of a given block-structured grid into logically-rectangular clusters which are 'optimal' is presented. This technique uses the simulated annealing optimization method to reorganize the blocks into an optimum configuration, that is, one which minimizes a user-defined objective function such as the number of clusters or the differential in the sizes of all the clusters. The clusters which result from applying the technique to two different two-dimensional configurations are presented for a variety of objective function definitions. In all cases, the automatically-generated clusters are significantly better than the original clusters. While this new technique can be applied to block-structured grids generated from any source, it is particularly useful for operating on block-structured grids containing many blocks, such as those produced by the emerging automatic block-structured grid generators

    Rapid Generation of Parametric Aircraft Structural Models

    Get PDF
    Within the aerospace design, analysis and optimization community, there is an increasing demand for automatic generation of parametric feature tree (build recipe) attributed multidisciplinary models. Currently, this is mainly done by creating separate models for different disciplines such as mid-surface model for aeroelasticity, outer-mold line for aerodynamics and CFD, and built-up element model for structural analysis. Since all of these models are built independently, any changes in design parameters require updates on all the models which is inefficient, time-consuming and prone to deficiencies. Here a browser-based system, called the Engineering Sketch Pad (ESP), is used. It provides the user with the ability to interact with a configuration by building and/or modifying the design parameters and feature tree that define the configuration. ESP is based an open-source constructive solid modeler, named OpenCSM, which is built upon the OpenCASCADE geometry kernel and the EGADS geometry generation system. The use of OpenCSM as part of the AFRL’s CAPS project on Computational Aircraft Prototype Syntheses for automatic commercial and fighter jet models is demonstrated. The rapid generation of parametric aircraft structural models proposed and developed in this work will benefit the aerospace industry with coming up with efficient, fast and robust multidisciplinary design standardization of aircraft structures

    Energy Efficiency of Distributed Environmental Control Systems

    Get PDF
    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant’s thermal dissatisfaction below a given threshold. The DECS energy usage was calculated using the simplified thermal model. OSFA control; providing a uniform temperature to the entire building, and occupant-selected HIYW control with a thermostat at each workstation were implemented for 3 cities representing 3 different climatic regions and control scenarios. It is shown that optimization allows DECS to deliver a higher level of individual and population thermal comfort while achieving annual energy savings between 14 and 26% compared to OSFA. The optimization model also allowed us to study the influence of the partitions’ thermal resistance and the variability of internal loads at each office. These influences didn’t make significant changes in the optimized energy consumption relative to OSFA. The results show that it is possible to provide thermal comfort for each occupant while saving energy compared to OSFA Furthermore, to simplify the implementation of this approach, a fuzzy logic system has been developed to generalize the overall optimization strategy. Its performance was almost as good as the gradient system. The fuzzy system provided thermal comfort to each occupant and saved energy compared to OSFA. The energy savings of the fuzzy system were not as high as for the gradient-optimized system, but the fuzzy system avoided complete connectivity, and the optimization did not have to be repeated for each population. 3. We employed a detailed CFD model of adjacent occupied cubicles to extend the thermal-circuit model in three significant ways: (a) relax the “office wall” requirement by allowing energy to flow between zones via advection as well as conduction, (b) improve the comfort model to account both for radiation as well as convection heat transfer, and (c) support ventilation systems in which the temperature is stratified, such as in underfloor air distribution systems. Initially, three-dimensional CFD simulations of several cubicle configurations, with an adjoining corridor, were performed both to understand the advection between cubicles and the resulting temperature stratification. These simulations showed that the advective flow between cubicles is very significant and severely limits the occupants’ ability to control the personal micro-environments by simply controlling the temperature of the incoming air. Subsequently, the existing thermal-circuit model was extended to include the phenomena described above. The modifications to the thermal-circuit model, which were incorporated such that the simulation time was only slightly impacted, showed that accounting for room stratification resulting from the use of floor swirl diffusers could lead to 10%-26% reduction in the annual energy consumed for HVAC in non-temperate climates. This trend was evident in both OSFA and HIYW scenarios. However, the ratio of energy usage in the two scenarios was little affected by the enhancements in the thermal model

    Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design

    Get PDF
    New ideas are forthcoming to break existing bottlenecks in using CFD during design. CAD-based automated grid generation. Multi-disciplinary use of embedded, overset grids to eliminate complex gridding problems. Use of time-averaged detached-eddy simulations as norm instead of "steady" RANS to include effects of self-excited unsteadiness. Combined GPU/Core parallel computing to provide over an order of magnitude increase in performance/price ratio. Gas-turbine applications are shown here but these ideas can be used for other Air Force, Navy, and NASA applications

    Geometry Modeling for Unstructured Mesh Adaptation

    Get PDF
    The quantification and control of discretization error is critical to obtaining reliable simulation results. Adaptive mesh techniques have the potential to automate discretization error control, but have made limited impact on production analysis workflow. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic mesh adaptation mechanics. However, the poor integration of initial mesh generation and adaptive mesh mechanics to typical sources of geometry has hindered adoption of adaptive mesh techniques, where these geometries are often created in Mechanical Computer- Aided Design (MCAD) systems. The difficulty of this coupling is compounded by two factors: the inherent complexity of the model (e.g., large range of scales, bodies in proximity, details not required for analysis) and unintended geometry construction artifacts (e.g., translation, uneven parameterization, degeneracy, self-intersection, sliver faces, gaps, large tolerances be- tween topological elements, local high curvature to enforce continuity). Manual preparation of geometry is commonly employed to enable fixed-grid and adaptive-grid workflows by reducing the severity and negative impacts of these construction artifacts, but manual process interaction inhibits workflow automation. Techniques to permit the use of complex geometry models and reduce the impact of geometry construction artifacts on unstructured grid workflows are models from the AIAA Sonic Boom and High Lift Prediction are shown to demonstrate the utility of the current approach
    corecore