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PREFACE 

This report is the result of a research effort sponsored by the US Department of Energy 
under Grant No. DE-FG02-03ER63694 to Syracuse University. Professor H. Ezzat Khalifa 
is the Principal Investigator; Professors Can Isik and John Dannenhoffer are co-principal 
investigators, all of the College of Engineering and Computer Science at Syracuse University. 
The research team also included Professor Peter Wilcoxen of the Syracuse University 
Maxwell School, and three engineering graduate students who performed the analytical and 
computational work under the supervision of Professors Khalifa, Isik, Dannenhoffer and 
Wilcoxen, namely: Mr. Ian Cosden who developed and implemented the thermal model of 
the building and its environmental control system; Mr. Seckin Ari who developed the 
comfort model and performed the optimization and control analyses; and Mr. Xuanhang 
(Simon) Zhang, who developed the CFD model of intra- and inter-cubicle air and energy 
transport and refined the thermal and comfort models accordingly. 
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A. ABSTRACT 

Recent research has indicated that allowing building occupants to customize their own local 
environment increases satisfaction and workplace performance. However, concern about the 
possible increase of energy consumption associated with the implementation of distributed 
localized environmental control has limited the widespread adoption of such systems. In this 
report, we present an analytical evaluation of the potential of occupant-regulated distributed 
environmental control systems (DECS) to enhance individual occupant thermal comfort in 
an office building with no increase, and possibly even a decrease in annual energy 
consumption. To this end we developed and applied several analytical models that allowed 
us to optimize comfort and energy consumption in partitioned office buildings equipped 
with either conventional central HVAC systems or occupant-regulated DECS. Our approach 
involved the following interrelated components: 

1. Development of a simplified lumped-parameter thermal circuit model to compute the 
annual energy consumption. This was necessitated by the need to perform tens of thousands 
of optimization calculations involving different US climatic regions, and different occupant 
thermal preferences of a population of ~50 office occupants. Yearly transient simulations 
using TRNSYS, a time-dependent building energy modeling program, were run to determine 
the robustness of the simplified approach against time-dependent simulations. The 
simplified model predicts yearly energy consumption within approximately 0.6% of an 
equivalent transient simulation. Simulations of building energy usage were run for a wide 
variety of climatic regions and control scenarios, including traditional “one-size-fits-all” 
(OSFA) control; providing a uniform temperature to the entire building, and occupant-
selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The 
thermal model shows that, un-optimized, DECS would lead to an increase in building energy 
consumption between 3-16% compared to the conventional approach depending on the 
climate regional and personal preferences of building occupants. Variations in building shape 
had little impact in the relative energy usage. The model also allowed us to study the effect 
of the thermal resistance of the partitions between adjacent workstations, which can have a 
significant influence on the energy cost (3% to 78% increase), absent full system 
optimization. 

2. Development of a gradient-based optimization method to minimize energy consumption 
of DECS while keeping each occupant’s thermal dissatisfaction below a given threshold. The 
DECS energy usage was calculated using the aforementioned simplified thermal model. 
Traditional OSFA control; providing a uniform temperature to the entire building, and 
occupant-selected HIYW control with a thermostat at each workstation were implemented 
for 3 different cities representing 3 different climatic regions and control scenarios. It is 
shown that optimization allows DECS to deliver a higher level of individual and population 
thermal comfort while achieving annual energy savings between 14 and 26% compared to 
OSFA, depending on the climate region and personal preferences of building occupants. 
The coupled comfort-energy consumption optimization model also allowed us to study the 
influence of the partitions thermal resistance and the variability of internal heat loads at each 
office. These influences didn’t make significant changes in optimized DECS energy 
consumption relative to conventional OSFA systems. The results have shown that it is 
possible to provide thermal comfort for each occupant of a building while saving energy 
compared to a traditional system. Furthermore, in order to simplify the implementation of 
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this distributed control approach, a fuzzy logic system has been developed to generalize the 
overall optimization strategy of the gradient-based system. Its performance was almost as 
good as the gradient system, while avoiding its implementation difficulties. That is, the fuzzy 
logic system provided thermal comfort to each occupant, and saved energy compared to a 
traditional OSFA system. The energy savings of the fuzzy logic system were not as high as 
that of the gradient-optimized system, but in return, the fuzzy logic system avoided the 
complete connectivity requirement of the optimum system, and the optimization did not 
have to be repeated for each population. 

3. In the third component of our research, we employed a detailed CFD model of adjacent 
occupied cubicles to extend the abovementioned thermal-circuit model in three significant 
ways: (a)  relax the “office wall” requirement by allowing energy to flow between zones via 
advection as well as conduction,  (b) improve the comfort model to account both for 
radiation as well as convection heat transfer, and (c) support ventilation systems in which the 
temperature is stratified, such as in underfloor air distribution systems. Initially, three-
dimensional CFD simulations of several cubicle configurations, with an adjoining corridor, 
were performed both to understand the advection between cubicles and the resulting 
temperature stratification. These simulations showed that the advective flow between 
cubicles is very significant and severely limits the occupants’ ability to control the personal 
micro-environments by simply controlling the temperature of the incoming air. 
Subsequently, the existing thermal-circuit model (see item 1 above) was extended to include 
the phenomena described above. The modifications to the thermal-circuit model, which 
were incorporated such that the simulation time was only slightly impacted, showed that 
accounting for room stratification resulting from the use of floor swirl diffusers could lead to 
10%-26% reduction in the annual energy consumed for HVAC in non-temperate climates. 
This trend was evident in both OSFA and HIYW scenarios. However, the ratio of energy 
usage in the two scenarios was little affected by the enhancements in the thermal model. 

In a separate project, work is currently underway to verify experimentally the findings of the 
CFD model and to incorporate the improved thermal model of item 3 in the optimization 
model of item 2 above. 
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B. REPORT SUMMARY 

BACKGROUND 
Current central HVAC systems are designed to satisfy the thermal comfort needs of 80% of 
building occupants1. These “one-size-fits-all” (OSFA) designs contribute to thermal 
discomfort and suboptimum indoor environmental quality (IEQ) [1]. Annual productivity 
loss resulting from poor IEQ in large office buildings has been estimated as high as $250B 
[3]. Occupant satisfaction and performance can be markedly improved by providing local 
environmental control [4-7]. However, if not specifically addressed within the overall system 
optimization, such decentralized control could result in higher energy consumption. The 
strong link between IEQ and building energy consumption is highlighted in “A priority 
agenda for energy related indoor environmental quality research” [8].  

The complexity of HVAC systems in large buildings presents formidable challenges in 
providing local environmental control. Acceptable IAQ within these buildings is traditionally 
maintained through dilution of recirculated air with outside air in accordance with the 
ventilation procedure of ASHRAE Standard 62 [9]. However the use of large amounts of 
outside air for contaminant dilution results in higher energy consumption, and would be 
ineffective when outdoor air quality is poor. Ventilation systems in most of these buildings 
are of the mixing type, contributing to rapid dispersion of contaminants from localized 
sources, and higher energy consumption (they condition both occupied and unoccupied 
spaces within the same zone). Mixing type ventilation systems also make it impracticable to 
provide local environmental control within connected spaces. Displacement and localized 
ventilation systems have been proposed to overcome the shortcomings of mixing-type 
ventilation systems [10, 11]. For example, underfloor air distribution systems promise 
improved comfort and lower energy consumption and facilitate individual control [12, 13]. 
Localized (Task) ventilation systems include Johnson Controls’ “Personal Environments” 
system, which provides individual workers with controllable environmental conditions, 
resulting in a 3-15% performance improvement after installation [4, 5], and Centercore 
developed the Airflow system, a user-controllable fan-filter that improves IAQ as well as 
user satisfaction, health, and performance [6, 7].  

Task ventilation systems that regulate only air flow and direction and rely on central 
temperature and humidity control systems to condition air supply, are not likely to achieve 
full benefit in human performance possible by local environmental control. Enhanced 
human comfort, satisfaction and performance could be achieved if local control also extends 
to temperature and humidity, e.g., [14]. However, if not optimized within the framework of 
an integrated building system, such decentralized local environmental control may result in 
increased energy consumption, particularly in the case of high occupant density within 
contiguous or partially connected spaces, e.g., an open classroom or a cluster of office 
cubicles. In an office building partitioned into offices, cubicles, or other semi-open work 
spaces, individual control would result in significant cross-flows between adjacent spaces as a 
result of the varying adjustments of the conditioned air supply or temperature to suit the 
preferences of the individual occupants. With individual control of ventilation and the 
thermal environment in connected, partitioned or semi-open work spaces (e.g., cubicles), 

                                                 
1 Percentage of dissatisfied occupants may be as high as 30% [1]. 
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imbalances in supply air flow and temperature may cause significant fluxes of air, 
contaminants and energy between adjacent cubicles. These airflows would negate some of 
the benefits of individual control. The presence of these energy fluxes in occupant controlled 
scenarios has lead some to suspect that that the wide use of DECS would increase building 
energy consumption for HVAC. 

The essential enablers of this “have it your way” (HIYW) vision is the development of 
distributed environmental control systems (DECS), by which many interacting (coupled) 
personal microenvironments (PμEs) within a building comprising a very large number of 
such PμEs can be optimized for increased thermal comfort without increasing the building’s 
overall energy consumption. Prior research has focused largely on a "one-size-fits-all" 
(OSFA) central approach that left a large fraction of the building occupant either dissatisfied 
or at a higher risk of exposure to harmful pollutants. Nowadays, increasing attention is being 
paid to detailed studies of the PμE, e.g., [15, 16], but little work is done on the energy and 
comfort implications of their interaction with the context of a complex, integrated built 
environmental system – BES remains largely unexplored [17, 18]. 

PROJECT SCOPE 
The underlying hypothesis of the research described in this report is that considerable gains 
in human performance and satisfaction can be obtained through "mass-customization" of 
the individuals' personal micro-environment (PμE). The challenge in providing individuals 
with a wider range of control of their personal thermal microenvironment while optimizing 
the entire system for higher occupant thermal satisfaction and lower energy consumption is a 
formidable one. An assessment of the energy efficiency implications of distributed 
environmental control systems (DECS) within typical light commercial and institutional 
buildings is the aim of the study documented in this report. 

This project is focused on analytical and computational evaluations of individual thermal 
comfort and energy consumption in typical partitioned office suites (e.g., Fig. 1), under two 
environmental control scenarios: 

1) conventional central HVAC control in which the entire office suite is controlled by a 
small number of thermostats adjusted to achieve a uniform average thermal 
environment for all occupants. We designate this scenario “one size fits all” (OSFA);  

2) distributed environmental control (DECS) in which each individual is allowed to 
regulate his/her thermal environment based on personal preferences. We designate 
this scenario as “have it your way” (HIYW). 

In both scenarios, cooling is provided by an electric vapor-compression system and heating 
by a gas-fired furnace. It is also assumed that each individual has a characteristic thermal 
preference defined, a priori by a preferred neutral temperature and a temperature tolerance 
range. Effects of humidity, draft, asymmetrical radiation, temperature gradients, actual or 
perceived air quality, and a host of other environmental factors that affect comfort and 
energy consumption were not considered. These could be included in future studies of 
DECS. 

By adopting a HIYW rather than a OSFA environmental control strategy, system 
complexity, as measured by the number of degrees of freedom, increases considerably (Fig. 
2), necessitating the use of intelligent optimization and control methodologies to achieve 
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improved thermal comfort without increasing energy consumption. This is primary 
motivation for the present investigation.  

Figure 1. Typical Office Floor with Private Offices, Cubicles and Open Workspace 

Figure 2: OSFA vs HIYW Scenarios 

RELEVANCE TO DOE 
DOE has long recognized that building IEQ and energy consumption are intimately related 
[19]. In the US, buildings account for over one-third of the total energy consumption and 
building HVAC is close to 45% of that [20]. Given the strong influence of IEQ on human 

One size fits all!
Central Control

Conventional Control…
% Satisfied <80%

One size fits all!
Central Control

Conventional Control…
% Satisfied <80%

Have it your way! 
Individual Control

Requires Intelligent Control…
% Satisfied >95%

Have it your way! 
Individual Control

Requires Intelligent Control…
% Satisfied >95%
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health and performance [3], and the importance of energy conservation to the national 
economy and environmental sustainability, it is important to develop building environmental 
control systems that enhance IAQ and comfort while reducing energy consumption. 
However, these two imperatives do not always go hand in hand; IEQ enhancement practices 
may increase or decrease energy consumption and energy conservation measures may result 
in improved, worsened or neutral IEQ [8].  

This project addresses a class of building environmental control systems that has shown a 
significant promise in improving IEQ through distributed local control, yet received little 
attention insofar as their impact on overall energy consumption, and their optimal 
integration into densely populated commercial buildings. Advancing the technology of  
energy efficient DECS would support the dual DOE objectives of improved IEQ and lower 
energy consumption for building environmental control. 

PROJECT OBJECTIVE 
The objective of this project is twofold:  

a) to quantify the HVAC energy efficiency for buildings equipped with occupant-
regulated distributed environmental control systems (DECS) relative to the same 
buildings when equipped with conventional central HVAC systems,  

b) to develop optimization and control strategies that optimize overall energy 
consumption and improve individual thermal comfort in DECS-equipped typical 
office buildings. 

A further goal of this work is to identify technical barriers and future research needs for 
DECS-equipped buildings.  

TECHNICAL APPROACH 
In order to fulfill the project objectives, we conducted a research effort organized into three 
interrelated technical thrusts, namely:   

Development of a Simplified Building Thermal Model 

We developed a simplified lumped parameter thermal circuit model for an office building 
that can be controlled by any number of thermostats, from one to as many as there are 
rooms. The model was developed so that it can be executed very rapidly in order to allow its 
use in gradient and fuzzy optimization techniques that require tens of thousands of repeated 
calls to the energy calculation routine for several US climatic regions and occupant thermal 
preferences (thermostat settings). Yearly transient simulations using TRNSYS2, a time-
dependent building energy modeling program were found to be very slow for repeated use in 
the comfort/energy optimization calculations. Consequently, TRNSYS was used only as a 
check on the robustness of the simplified model against time-dependent simulations. The 
annual energy consumption in the simplified model was based on a modified temperature-
bin method, whereas the TRNSYS simulations were based on hourly typical meteorological 

                                                 
2 DOE2 or Energy+ could have been used for the same purpose but we opted for TRNSYS because of its well developed user 

interface. 



Report No. DOE\ER63694-1 

 9

year weather data. Both were run for a range of climatic conditions, spanning the spectrum 
from cold (heating-dominated), to moderate (temperate), to hot (cooling-dominated). 

In order to compute the annual energy consumption of the building and optimize its 
operation for IAQ, comfort and energy efficiency, it is necessary to incorporate models of 
the performance characteristics of the HVAC systems3 under varying indoor (zone) and 
outdoor conditions, and under various control settings. Therefore, the building thermal 
model included a representation of commercially available HVAC system performance as a 
function of indoor and outdoor conditions, as well as the effect of HVAC system cyclic 
degradation for part-load (off-design) operation. The HVAC system model also included the 
option to use an economizer when the ambient conditions permit the use of this energy 
saving feature.  

The simplified thermal model accounts for differences in external envelope and internal 
partition thermal resistance, building configuration (e.g., floor aspect ratio), supply air flow 
rate, internal loads, and thermostat settings. This model, and the results obtained from it are 
described in detail in Section C of this report. 

Development of DECS Optimization and Control Strategies 

Control of advanced HVAC systems can be viewed as a multi-criteria optimization problem. 
Some of these criteria are objective, such as energy consumption and indoor air quality. Such 
variables are measurable in a physical setting, and computable in numeric implementations. 
Some are subjective, and difficult to quantify, such as individual comfort.  

It has been established that as a result of a traditional central control, about 80% of the 
occupants are satisfied on average. If a hypothetical distributed control system provides to 
each occupant the exact environment they desire, then close to 100% of the occupants 
would be satisfied. One class of control strategies views the individual selections of 
environmental variables such as the thermostat setting as inputs to an optimization problem, 
rather than absolute targets to be met. Then, the distributed control of the HVAC can be 
formulated as finding a solution (a distribution of target HVAC variables) that satisfies a 
predetermined percentage of the occupants (between 80% and 100%) at the smallest 
possible energy cost. In this preliminary study we evaluated both gradient-based algorithms 
and genetic algorithms [21] and selected the former for its computational efficiency.  

The starting point of the system optimization effort was the development of a 
computational statistical model of the response (comfort) of an individual to the thermal 
environment (characterized by the dry-bulb temperature only). The thermal comfort model 
was calibrated such that it produces the same population statistics as the thermal comfort 
model specified in ASHRAE Standard 55 (based on Fanger’s work) [22]. This thermal 
comfort model, along with the abovementioned simplified thermal model  have been 
integrated into optimization routines (gradient method and fuzzy rules) and used to study 
the energy consumption and predicted percent dissatisfied (PPD) of a population of 49 
office workers in a variety of climatic conditions and building thermal properties (wall and 
partition thermal resistances, ventilation rate, etc). Initial results indicate that it is possible to 
optimize the operation of a building equipped with DECS for both reduced energy 

                                                 
3 We use the term “system” here to include both the air-side and the “refrigerant” or heat transfer fluid side of the HVAC system; 

each side will be treated as a coupled subsystem of the overall HVAC system. 
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consumption and decreased PPD. The energy and comfort models, coupled with the control 
strategies yield predictions of the overall HVAC system (DECS) annual energy consumption 
for a given occupancy profile (distribution of occupants with differing thermal preferences) 
and use schedule.  

To assess the sensitivity of the predicted performance statistics (that is, objectives and 
constraints) to the arrangement of building occupants (each with his/her own optimal 
comfort setting), we ran several (~50) full simulations, each with a different random 
arrangement of building occupants. The performance statistics from each of the runs are 
then combined to determine the sensitivity of these statistics, including worst-case, best-case, 
and average behaviors. For each case metrics of energy efficiency and comfort were 
computed, e.g. relative annual energy consumption and predicted percent dissatisfied (PPD) 
[22]. Because DECS control algorithms need to run in real time, on platforms with modest 
computational power, neural network and fuzzy logic approximations have been investigated 
and applied as reduced order modeling tools in the development of the DECS control 
algorithm [23]. 

Detailed description of this thrust are given in Section D of this report.  

Refinement of the Thermal Model Through CFD Simulations 

In the third thrust of our research, we employed a detailed CFD model of adjacent occupied 
cubicles to extend the abovementioned thermal-circuit model in three significant ways: (a)  
relax the “office wall” requirement by allowing air and energy to flow between zones via 
advection as well as conduction,  (b) improve the comfort model to account both for non-
uniform radiation as well as convection heat transfer from the human body (rather than 
assume that the body is exposed to the uniform temperature of well mixed room air, and (c) 
model ventilation systems in which the temperature is stratified, such as in underfloor air 
distribution systems. Initially, three-dimensional CFD simulations of several cubicle 
configurations, with an adjoining corridor, were performed both to understand the advection 
between cubicles and the resulting temperature stratification. This effort was motivated by 
indications that significant advective flows between adjacent cubicles would defeat the 
purpose of HIYW control, i.e., limit the occupants’ ability to control the personal micro-
environments by regulating the temperature of the incoming air. Subsequently, the existing 
thermal-circuit model (see item 1 above) was modified and extended to include the 
phenomena described in items (a), (b) and (c) above.  

The simulations were performed using the commercially-available CFD solver FLUENT. 
The simulations were performed for a pair of adjacent cubicles sharing a corridor using the 
k-ε turbulence model. Each cubicle was equipped with an L-shaped desk, heated blocks 
representing a seated person, a computer and a task lamp, a floor-mounted swirl diffuser, 
and a ceiling exhaust vent.  

Detailed description of this thrust are given in Section E of this report. 

RESULTS AND CONCLUSIONS 
The following paragraphs are organized into the same three thrusts described above in the 
Technical Approach:  
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Development of a Simplified Building Thermal Model 

The lumped parameter, TCTB model, presented in this study provided us with an accurate 
and quick method to simulate yearly building energy usage. From the comparison with 
TRNSYS we were able to determine that, despite neglecting transient effects, for a yearly 
simulation the TCTB model predicted energy usage within approximately 0.6% of the 
transient TRNSYS solution (without solar radiation), while executing in one six-hundredth 
of the time. The effect of solar radiation was neglected, and proved to be a minor 
assumption (approximately 3% energy difference over a yearly simulation) when the direct 
beam radiation through the windows was removed. The TCTB model’s major advantage 
over the transient TRNSYS simulations is its significantly faster execution time.  

The TCTB model was able to run a yearly simulation for the two control strategies (HIYW 
and OSFA) for all 15 cities in approximately thirty seconds. Running the equivalent 
TRNSYS simulations would require 30 independent simulations each requiring between ten 
and fifteen minutes of computation time. This would make running large-scale optimization 
or parametric studies using a TRNSYS nearly impossible in a reasonable time frame. The 
lumped parameter approach was ideal for the exploration of energy costs in buildings 
equipped with distributed environmental control systems. 

The cost associated with the adoption of a HIYW approach to environmental control is 
dependent on a number of factors including: climate region, interior partition thermal 
resistance, building inhabitants preferences, and to a lesser extent building shape (excluding 
solar heat gain, which depends strong on building shape and orientation). The remainder of 
the results and conclusions in this thrust are based on analyses without comfort and 
energy optimization. 

At extreme temperatures, both hot and cold, the heat transfer associated with the small 
internal temperature deviations between offices in a building becomes insignificant 
compared to the heat transfer with the outside ambient air. The opposite is true for mild 
outdoor temperatures. At these temperatures the building energy usage is lowest. Internal 
heat transfer between offices at different temperatures becomes more significant and has an 
appreciable effect on building energy use. This is further impacted by the presence of an 
economizer. In the HIYW case, the economizer is unable to meet the cooling load of the 
building at outdoor temperatures at which it can in the OSFA case.  

The climate in which a building is located is a major factor in the cost associated with HIYW 
compared to OSFA. Cities, and their corresponding climate zones, with a significant portion 
of the year having extreme temperatures (Miami, Phoenix, Fairbanks, etc.) show the lowest 
increase in yearly energy usage when switching to HIYW control (between 2-6%). It is in 
these cities that adoption of personal environmental control systems appears to be the best 
choice. Cities with a moderate climate, such as San Francisco, show the largest increase in 
yearly energy usage, ranging from 10-20% and would be the least practical to implement 
personal control. The majority of the US population lives in climates that fall between these 
two extremes and would likely see a 5-10% increase with the adoption of personal control.  

The thermal resistance of the interior partition of a building also greatly affects the energy 
cost associated with HIYW. Thermal resistances ranging from partial height cubicles to full 
office walls, appear to provide sufficient resistance to internal heat transfer to keep building 
energy usage within reasonable limits. However, open workspaces, where there are no 
physical boundaries between personal zones, may create significant internal heat transfer that 
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translates to increased energy costs. However, the well-mixed model assumption is a poor 
representation of the physical problem and more research must be done to determine true 
energy transfer characteristics of such open office spaces.  

The impact of the randomness of the personal preferences of building occupants varies 
depending on the climatic location of the building. In most cities the random populations 
fell within approximately 3-10% increase for common interior walls and a 4-15% increase 
for partial height partitions. For a building in San Francisco, or a comparable climate, the 
impact of the building occupants’ desired temperatures was significantly larger. The HIYW 
energy usage premium ranged from 10-35% for common interior walls and 23-78% for 
partial height partitions depending on the specific occupants within the building. Regardless 
of building occupants, in every case, except two populations, HIYW used more energy over 
the course of a year than OSFA. The only two instances where HIYW saved energy were in 
extreme climates (Miami and Fairbanks) for an unusually fortunate arrangement of building 
inhabitants. In both these cases the yearly savings was less than 1%. For all other 
arrangements and in every other city HIYW resulted in an increase in energy usage, in some 
cases as high as 78% more than OSFA. A summary of the unoptimized results for several 
cities and a 100 office populations is presented in Fig. 3. 

 

Figure 3: Comparison of non-optimized OSFA and HIYW Scenarios (100 populations) 

Building shape appears to have a very small influence on the relative cost between HIYW 
and OSFA. Most office buildings tend to be rectangular with at least some core offices or 
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cubicles. Small changes in the aspect ratio of the building have a negligible effect on HIYW 
costs. Even drastic changes, such as a corridor of only exterior offices, actually slightly 
lowered the energy penalty related to the adoption HIYW.  

By providing the building occupants’ with slightly different temperatures than their desired 
perfect temperature, energy savings can be realized. No longer will a personalized approach 
to environmental control result in increased yearly energy costs. A small 1°C deviation from 
the occupants’ neutral temperature can help create an energy savings from OSFA in nearly 
every city, while still catering to the occupants’ desires. This promising result has been 
explored in other studies by the author and others. It was shown that using advanced 
optimization techniques to intelligently adjust the occupants’ temperature set points, 
optimized HIYW can result in an energy savings and a better overall thermal satisfaction 
than OSFA.  

Without optimization, the increase in energy associated with HIYW compared to OSFA in 
the worst case scenario was approximately 78%. This corresponded to the worst of 100 
populations in a partial height partitioned building in San Francisco.  

The TCTB model can be improved in the future to include even more physics, especially 
solar radiation and humidity effects. The temperature bin approach could be expanded to 
some form of three dimensional weather bins to include humidity as well as dry bulb 
temperature. The effect of solar radiation on building energy use is large when windows are 
involved and would be beneficial to include in the TCTB model, either directly or through 
some correlation with the outdoor temperature. If it is possible to correlate the solar gain on 
a vertical surface with different azimuths, a correction factor could be added to the dry bulb 
temperature. A new effective temperature could then be used for the outer surfaces and 
windows. Shading factors could then be calculated and a better approximation for windows 
exposed to solar gains could be made. More work must to be done in an effort to 
understand and quantify the energy flux between partial height partitions. Field testing and 
experimental office settings may provide some of the answers and help to further validate 
the computed results.  

Development of DECS Optimization and Control Strategies 

This study has shown that, through optimization and intelligent control,  it is possible to 
provide improved thermal comfort to all occupants of a building with no increase in energy 
consumption. In fact, our analysis indicates that it would be possible to increase thermal 
comfort while achieving energy savings. More specifically, in this study, a methodology 
called Optimized HIYW has been developed that takes advantage of an individual’s range of 
insensitivity to small deviations from his/her preferred temperature setting, and minimizes 
the annual energy consumption for environmental control in a building subject to a 
maximum dissatisfaction level constraint for all individual occupants.  

A straightforward gradient based optimization, as well as a fuzzy logic generalization of the 
underlying principles of the optimum solutions have been used as alternative 
implementations. Both results have been compared with a traditional OSFA solution to 
demonstrate their improvements in both thermal comfort and energy consumption (Fig. 4). 

The numeric results about individual dissatisfactions showed that both HIYW and fuzzy 
logic approximation provide a Degree of Individual Dissatisfaction (DID) level of no more 
than 20% for each occupant. The OSFA method, on the other hand, does not guarantee any 
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level of individual thermal comfort. For instance, for Phoenix, AZ, OSFA is likely to cause 
the DID level to exceed the 20% limit for ~15% of the occupants, and to exceed 50% for 
~5% of the occupants. Similar violations of individual comfort levels by the OSFA method 
were observed for other cities as well (Fig. 5). 

Occupants’ comfort has been improved while reducing energy consumption by optimized 
HIYW system. While HIYW approach requires the use of all sensor network connectivity in 
the building, it is not required in fuzzy logic approximation. Reduction of sensor 
connectivity would not only reduce system complexity, but also cause modest decrease in 
energy savings relative to fully connected HIYW system. 
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Figure 4:  HIYW Annual Energy Savings Relative to OSFA. 

Figure 5: Comparison of Degree of Individual Dissatisfaction 

Horizontal Room #

V
er

tic
al 

Ro
om

 #

DID

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Horizontal Room #

V
er

tic
al 

Ro
om

 #

DID

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

HIYW OSFA

Horizontal Room #

V
er

tic
al 

Ro
om

 #

DID

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Horizontal Room #

V
er

tic
al 

Ro
om

 #

DID

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

HIYW OSFA



Report No. DOE\ER63694-1 

 15

Optimal results for lower internal resistances, and non-uniform heat loads are also 
encouraging to apply HIYW system in real world applications. There is always between 
trade-off between energy consumption and thermal comfort. However, while optimized 
HIYW make occupant reasonably satisfied within an acceptable temperature range, it also 
improves the cost of the system under the different thermal conditions such as outside 
temperature, desired temperatures of occupants, heat loads in offices, and resistance values 
of internal walls. 

Refinement of the Thermal Model Through CFD Simulations 

For two cubicles and an adjoining corridor, the advective flow between zones is very 
significant and severely limits the occupants’ ability to control the personal micro-
environments via inlet temperature control. CFD calculations were performed for pairs of 
cubicles with an adjoining corridor in which the supply temperatures in the two cubicles 
differed by up to 8  °C.  

In cases where the air was allowed to freely traverse through the corridor, the temperatures 
“felt” by the occupants in the two cubicles differed by less than 25% of the supply 
temperature difference.  

Flow visualization of the CFD results indicated that this loss of personal temperature control 
was caused by the cold supply flow sinking to the floor and traversing through the corridor 
into the other cubicle; at the same time, the warm supply in the other cubicle ascended into 
the space above the cubicles and had little effect on the temperatures “felt” by the occupant 
(Fig. 6). This cross flow counteracts the purpose of a “HIYW” and must be controlled to 
achieve a higher degree of individual control of one’s own environment. 

Figure 6: Corridor Cross-flow between Adjacent Cubicles  

Through a series of parametric studies, it was found that the effectiveness of personal 
environmental control could best be improved by installing doors at the openings between 
the cubicles and the corridor; other strategies, such as changing the height and insulation of 
the cubicle walls, changing the configuration of the cubicles, and altering the swirl direction 
and location of the inlet diffusers had a less significant effect on the control of the person 
temperature in the two cubicles (Fig. 7). 
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A thermal comfort model that accounts for stratified temperature profiles and radiation is 
required for configurations that employ an underfloor air distribution (UFAD) system. While 
Section C’s original thermal circuit (TC) model is suitable for predicting the annual energy 
consumption of buildings with mixing ventilation, its well-mixed assumption is not valid for 
the stratified flows associated with UFAD. In the current work, detailed CFD simulations 
were performed to predict the vertical air temperature profiles associated with UFAD, and a 
simple model was developed to approximate these profiles.  

The thermal circuit model was subsequently modified to account for the thermal 
stratification, both for the temperature experienced by the occupant and also for the energy 
transfer between zones via convection and conduction. Additionally, Section C’s model was 
modified to include a thermal comfort model that accounts both for convection/conduction 
and radiation to/from the occupant. Care was taken to include these additional physical 
phenomena into Section C’s model via linear relationships, and thus had a very small impact 
on the overall execution time of the model.  

Figure 7: Effect of Cubicle Configuration and Supply Temperature (Ts) on Personal 
Temperature (Tp) 

Including room stratification in the thermal model results in a reduction in the predicted 
energy usage for UFAD in non-temperate cities by between 10 and 26% annually, as 
compared with Section C’s simplified (well mixed room) model. This highlights one of the 
advantages of UFAD systems. These results apply both to Section C’s three-thermostats-for-
all (TTFA) and have-it-your-way (HIYW) control strategies. For cities with moderate 
climates such as San Francisco, the modified model, absent optimization, predicts about 
17% more energy is required, due largely to increased frequency of use of the economizer.  

Only slight changes were observed between the simplified and modified thermal models in 
the ratio of HIYW yearly energy usage to TTFA yearly energy usage. 
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SUGGESTIONS FOR FUTURE WORK 
Given the promising results of this initial effort, it is suggested that the following efforts be 
undertaken: (1) expand the optimization and control analysis to include advective and 
radiative coupling between adjacent offices, cubicles and workstations; (2) include a more 
realistic model of DECS performance; (3) account for transient weather and occupancy 
effects on comfort and energy use; (4) account for humidity, ventilation and radiation 
asymmetry in the assessment of comfort; (5) develop algorithms for sensor information 
fusion in DECS-equipped buildings; (6) demonstrate the effectiveness of DECS 
optimization and control strategies in a building testbed. 
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1 Introduction  

1.1 Overview 

Today, typical heating, ventilation, and air-conditioning (HVAC) systems account for 40-60% 

of the overall energy consumption of a building [1]. Before the 1970s energy crisis, HVAC 

systems were designed to provide quality occupant comfort with little regard for energy 

conservation. Systems often had simultaneous heating and cooling, and building envelopes 

were minimally insulated. Following the energy crisis, however, HVAC system design has 

shifted to reduce energy usage by lowering outdoor ventilation rates while keeping building 

temperatures on the threshold of acceptable levels. These energy conservation measures 

resulted in reduced comfort and unhealthy indoor air quality (IAQ). The quality of the indoor 

environment is critically important to human health and performance. It is estimated that in 

technologically developed countries people spend more than 90% of their time in a man-made 

environment (buildings, vehicles, etc.) [2]. 

The American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) 

and the International Organization for Standardization (ISO) have published standards that 

outline necessary conditions for human thermal comfort. ASHRAE Standard 55-2004 [3] titled 

“Thermal Environmental Conditions for Human Occupancy,” in close agreement with ISO 

Standard 7730 [4], specifies the criteria for providing acceptable thermal conditions in an 

indoor environment based on a combination of personal factors (clothing and activity level) 

and environmental factors (air temperature, humidity, radiant temperature, air velocity). The 

standard defines acceptable conditions as those under which 80% of a building’s occupants 

consider the thermal conditions satisfactory. It is therefore not only possible, but also 

acceptable to provide conditions deemed unsatisfactory by 20% of a building’s occupants. The 
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20% dissatisfied is broken into two parts: 10% for temperature discomfort and 10% for local 

non-uniformities (i.e. draft). The standards, by nature, are based on a population average 

comfort. They aim to provide a more or less uniform temperature and humidity to the entire 

group of building occupants and concede that some of the occupants will be dissatisfied. 

Given the diversity of human preferences, this has long been agreed on as the best method for 

design. 

Unfortunately, in practice achieving 80% satisfaction may be optimistic. Occupant satisfaction 

with overall office air quality and comfort has been found to be as low as 40% in some studies 

[5]. In a large field study of building thermal comfort, Schiller et al. [6] found less than 25% of 

the subjects surveyed were either moderately or very satisfied with the air temperature. The 

study consisted of 10 office buildings in the San Francisco Bay area with 304 participants. Of 

the workstation temperature measurements, 78.2% (winter) and 52.8% (summer) fell within 

the ASHRAE standard 55-81 comfort zones. In the buildings surveyed, 38% (winter) and 41% 

(summer) of the occupants felt the desire to be either warmer or cooler.  

In a large survey of office tenants by the Building Owners and Managers Association (BOMA) 

and the Urban Land Institute (ULI) tenants were asked to rate the importance of 53 different 

office amenities and features and rate their satisfaction of their current office in the same 53 

categories [7]. The tenants’ ability to control their own temperature, or the lack thereof, is the 

only feature that appears on both the most important list (97% of surveyed) and least satisfied 

list (65% of surveyed). The study suggests that upgrading the HVAC system to allow personal 

control would create an immediate, positive impact on tenants’ positive perception of the 

building environment. 
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1.2 Implementing Personal Environmental Control 

To achieve personal environmental control, the traditional HVAC approach of mixing 

ventilation needs to be modified. Mixing ventilation supplies conditioned air through a ceiling 

diffuser and relies on the inlet jet momentum and buoyancy to mix the supply air and room air 

[2]. The goal is to create as uniform a temperature as possible in the space (and therefore for 

the occupants) and supply enough clean air to dilute contaminants to a safe level. This type of 

ventilation system does not lend itself well to personal control in any type of setting other than 

a fully enclosed single-occupant room.  

Underfloor air distribution (UFAD) supplies conditioned air at floor level through numerous 

supply locations, while the returns are on the ceiling above the occupied space. Supply 

temperatures are slightly higher than traditional mixing ventilation since the supply vents are 

significantly closer to the occupants. Underfloor air distribution with low supply velocity 

conditions is similar to displacement ventilation [8], which relies solely on thermal buoyancy to 

provide occupants with conditioned air. The thermal plume generated by an occupant pulls 

cool, conditioned air from the floor level into the breathing zone. As a result underfloor air 

distribution, despite slightly higher supply air velocity than displacement ventilation, provides a 

greater ventilation efficiency at the breathing level than mixing ventilation since it is not mixed 

with a significant amount of the existing room air [8]. UFAD systems have the ability to 

provide occupants with local control by adjusting damper levels on the local floor diffusers [9]. 

Underfloor air distribution systems lend themselves easily to open plan office settings where 

each individual cubicle/workstation has its own floor diffuser and can therefore allow a person 

to adjust the damper according to his/her personal preference. In a field study of a building 

equipped with occupant controlled underfloor air distribution in an open plan office, Bauman 
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et al. [8] observed temperature differences in the range of 1°C to 2.5°C between adjacent 

workstations. 

Desktop (task) conditioning systems also provide occupants with a significantly higher amount 

of personal control than mixing ventilation systems [10]. While individual designs vary and are 

the subject of current research, in general desktop conditioning systems provide conditioned 

air through some type of diffuser (nozzle, grille, etc) at the desk level very close to the 

occupant’s breathing zone [10]. The advantage is clear; the conditioned air is supplied directly 

to the breathing zone nearly eliminating mixing with the room air.  

Manufacturers, such as Johnson Controls, have begun developing commercial desktop 

conditioning systems. The Johnson Controls Personal Environments® unit consists of a user 

control unit, task lighting, radiant heat panel, diffusers, fan, and particle filter to provide the 

occupant significant control over temperature, airflow, lighting, and acoustic levels [11].  

   

1.3 Personal Environmental Control Increases Productivity  

There is a growing list of researchers and practitioners who have found that allowing 

occupants control over their personal environment leads to increased comfort and 

productivity. Considering a traditional approach to thermal comfort, acceptable to 80%, 

overall workplace productivity is likely more affected by large numbers of slightly dissatisfied 

employees rather than a very few hypersensitive employees [5]. Therefore, if productivity is to 

be increased effectively the majority of employees, not just those that complain, must be given 

some level of personal control. In addition to comfort, physical illnesses have been attributed 

to poor ventilation and HVAC control. Sick Building Syndrome (SBS) symptoms are 

characterized by acute building-related health symptoms (e.g. irritation of eyes, headache, 
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fatigue). Despite being affected by psychosocial factors many building factors have been 

shown to influence SBS such as: outside air ventilation rate, temperature, humidity, and the 

level of chemical and microbiological pollutants [12]. Fisk [13] estimates the potential U.S. 

annual productivity gain from improved worker performance from changes in thermal 

environment and lighting to be between $20 billion and $160 billion (1996 U.S. $). Reduced 

respiratory illness and sick building syndrome could contribute an estimated additional annual 

savings of $16-34 billion from improved indoor environmental condition. Both displacement 

ventilation and especially task ventilation help provide more fresh air to the occupant’s 

breathing zone and can help limit exposure to pollutants and provide control to the individual. 

Lorsch and Abdou [14] found the lowest rate of industrial accidents to occur in the 67-69°F 

(19.4-20.6°C) range. Accidents increased significantly at temperatures above and only slightly 

below the temperature range. Tham [15] studied the effects of temperature and outdoor air 

supply rate on the performance of call center operators. He observed that the operators were 

(a) distinctly able to distinguish a difference between 22.5°C and 24.5°C, (b) more productive 

at the lower temperature (22.5°C), despite the common building practice of maintaining 

24.5°C, and (c) able to tolerate, without a decrease in productivity, the higher temperature 

(24.5°C) if the outdoor air supply rate was doubled from 5 l/s/person to 10 l/s/person.  

Wyon [16] predicted that by providing individual control equivalent to ±3°C, productivity 

would increase 2.7% for logical thinking, 7.0% for general office work, 3.4% for very skilled 

manual work, and 8.6% for very rapid manual work. In a later study with field observations, 

Wyon [17] showed that poor air quality, resulting from low outdoor air supply rate and 

uncomfortable temperatures, can have a negative effect on office productivity in the range of 

6-9%.  
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Johnson Controls performed a case study on the West Bend Mutual Insurance Company in 

West Bend, WI to determine the effectiveness of personal ventilation devices [18]. The 

building in question was a 15,000 sq. ft. company headquarters with over 500 employees in 

open-plan offices. Johnson Controls Personal Environments® systems were installed in each 

workstation allowing individual control of temperature, airflow, lighting, as well as background 

noise masking. As a result, employee productivity increased by an impressive 16%, 2.8% of 

which was attributed to the individual control of the workstation environment. The 2.8% 

increase was estimated to be a savings of $364,000 in annual payroll. Also, nearly all thermal 

condition complaints were eliminated; HVAC service calls decreased from more than 40 per 

day (at an estimate of $25 per call plus $250 in maintenance) to only two per week. 

Figure 1.1 shows average annual commercial building costs in dollars per square foot. 

Employee salaries are nearly ten times more costly than the next highest expense, rent. Utilities 

which we can consider to include all HVAC operation costs, is less than 1% of employee 

salaries. This means that if it were possible to increase the productivity of the employees by 

1%, the equivalent monetary gain is equal to the entire building utility cost. Surely this is 

motivation enough to explore the ability to increase worker productivity through increased 

comfort.  
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Figure 1.1 – Average annual commercial building expenses (in 1995 US dollars) [19]. 

 

With the benefits of personal environmental control (PEC) so overwhelmingly clear, there 

must be a reason for the industry’s reluctance for widespread adoption of individual control. 

The explanation is two fold:  (1) the high uncertainty of measuring an increase in productivity, 

and (2) increased energy costs. As mentioned before, typical HVAC systems account for 

between 40-60% of a commercial building’s overall energy consumption. Building owners are 

reluctant to adopt personal environmental control systems that will likely increase the energy 

usage of a building for the promise of more productive employees, given the high uncertainty 

of the latter. Energy costs, while small compared to employee salaries, are still a major 

commercial expense and are very easily measured, whereas productivity gains due to improved 

indoor environmental quality are much more difficult to measure. In addition, there is an 
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associated increase in initial construction costs. Lorsch and Abdou [20] note one instance of a 

federal building manager who spent $1 million on personal control and never saw concrete 

evidence of an increase in productivity. With experiences like this it is easily understand why 

building owners are hesitant to risk the increased costs associated with personal environmental 

control. Unfortunately the true energy cost associated with the adoption of personal 

environmental control is relatively unknown. Often PEC systems are installed in conjunction 

with other green building, energy saving enhancements that make it difficult to isolate the PEC 

contribution to building energy costs observed in field studies [18]. 

 

1.4 Previous Studies   

There have only been a handful of researchers who have modeled the energy usage of 

buildings equipped with occupant controlled distributed environmental control systems. Seem 

and Braun [21] compared HVAC and lighting costs of personal environmental control (PEC) 

with those of conventional variable air volume (VAV) systems through computer simulations. 

Each occupant had a desktop PEC equipped with an occupancy sensor. The sensor also 

controlled local task lighting. The PEC allowed occupants to control the temperature and flow 

rate of the airflow through a radiant heating panel and local fan. In addition to each PEC, 

underfloor diffusers were also included to provide overall conditioning to the space. Cooling 

was provided through a chilled water system while heat was provided through localized heating 

coils. Seem and Braun modeled one floor (45,000 sq. ft) of a multi-story building in Madison, 

WI with 360 total occupants. The building was modeled using TRNSYS [22] by dividing the 

building into three well mixed zones. Each PEC had different occupied and non-occupied 

heating and cooling set points, so when an occupant leaves his/her workstation the set points 
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are relaxed. Electricity was used to provide cooling power while natural gas was used to 

provide heating power at an assumed one-third the cost of electricity. Radiant heating panels, 

however, used electricity. In their analysis Seem and Braun neglected the heat transfer between 

the individual workstations/offices. In each of the three zones, there were at least 80 

occupants, all of whom were modeled as having the same temperature. The energy costs 

associated with maintaining different personal temperatures within these zones was not 

considered. That is, each workstation/office was assumed to be maintained at the same 

temperature when occupied. Overall the operating costs of PEC systems costs were found to 

be between 2-15% greater than the VAV systems. However, if occupancy rates of 

workstations fell below 60% then PEC systems resulted in a net savings of energy because of 

the occupancy sensor adjusting the lighting and workstation temperature. 

Glicksman and Taub [23] modeled occupant controlled HVAC systems using computer 

simulations. Unlike the previous study by Seem and Braun, Glicksman and Taub accounted 

for the heat transfer between individual zones. A model was created where individual nodes 

represented conditioned cubicles equipped with occupant controlled HVAC devices. The area 

between the cubicles and the ceiling was treated as a single well-mixed zone. Glicksman and 

Taub modeled an interior region on a floor of a multiple story office building. This interior 

region was an open-plan office space consisting of only cubicles with no interaction with 

outside weather conditions. A conventional mixing ventilation system was compared with a 

new occupant controlled underfloor air distribution system. Random processes were used to 

model the inhabitance of the occupants at their workstations as well as their desired 

temperature set points. The local occupant fans as well as the lighting and equipment 

(computer) is controlled by an occupant sensor. The preferred temperature for each occupant 

was taken from a Gaussian distribution with a mean of 23°C and a standard deviation of 
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1.5°C. From this distribution, temperatures were taken and assigned at random within the 

building model. This study estimated a substantial savings in the adoption of a floor based 

system. They predicted an annual energy savings of 13% for a non-uniform temperature 

distribution and a 21% savings for a uniform temperature distribution over a conventional 

mixing ventilation system using the same HVAC equipment. This is largely a result of the 

stratification within the room, reduced conditioning of the corridor, and occupancy sensors 

which reduce the heat load in unoccupied rooms. The energy penalty (8%) associated with the 

non-uniform (i.e. individual control) temperature distribution over a uniform distribution was 

driven by the energy penalty of the cooler than average rooms.  

 

1.5 Building Energy Simulation Programs 

There are a number of software programs dedicated to the simulation of building energy 

usage. TRNSYS (TRaNsient SYstem Simulation program) is a commercially available program 

designed for the transient simulation of thermal systems [22]. Main applications include: solar 

systems (solar thermal and photovoltaic systems), building energy simulation and HVAC 

systems, and renewable energy systems. TRNSYS has a polished front-end user interface and 

has become reference software for researchers and engineers doing building energy 

simulations. EnergyPlus, often referred to as e+, is another building energy simulation program 

for modeling building heating, cooling, lighting, ventilating, and other energy flows [24]. First 

introduced in 1999, EnergyPlus is based on the most popular features and capabilities of past 

building energy simulation programs BLAST and DOE-2. However, due to its recent 

inception it lacks a graphical user interface and has yet to gain significant use amongst 

researchers.  
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While some of the details of these programs are slightly different, the building energy 

simulation programs are all time-dependant codes and are designed to account for the 

transient nature of building environments (weather, occupant schedules, HVAC equipment 

cycling etc). One of the drawbacks of such programs is the execution time of yearly building 

energy simulations. Depending on a number of factors such as the total number of zones in a 

building and the HVAC equipment, the total computation time of a yearly simulation using a 

transient simulation program can take anywhere from a few minutes to a few hours.  

 

1.6 Objective 

This study is part of a larger project intended to explore building energy consumption 

minimization and occupant comfort maximization of distributed environmental control 

systems using optimization techniques. In order to accomplish this task, a quickly executing 

building energy model must be created to use as an objective function for the optimization 

routine. Using a gradient based optimization routines the building energy model will need to 

be executed thousands of times before an optimum is reached. For this reason we require a 

building energy simulation model unlike the aforementioned transient programs. If a 

simulation using a transient program executed in ten minutes, five thousand iterations of the 

program would take nearly thirty-five days to execute. This would make running large-scale 

optimization trials and parametric studies completely infeasible. The building model must 

execute orders of magnitude quicker than the transient building energy simulation programs to 

serve as a realistic objective function. 

Therefore, the objective of this study is to develop an accurate, fast-executing lumped 

parameter building model to quantify the energy costs associated with allowing occupants to 
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control their own micro environment through the use of distributed environmental control 

systems. For the purposes of this study we will consider the micro environment to be affected 

only by the dry bulb temperature since humans are far more sensitive to changes in 

temperature in normal conditions than humidity [1], and temperature control is the most 

desired office feature not currently available [7]. Also we will determine how factors, such as 

building shape and climate, affect the energy cost of distributed environmental control.  

In this report, we will start by outlining the necessary physical principles and assumptions used 

to develop a novel, temperature bin based, lumped parameter building model. We will then 

illustrate the mathematical formulation of the building model and the ensuing computer 

program. A discussion of the computed results and comparison of the new building model 

with a transient building energy simulation using TRNSYS will follow. Lastly, we will end with 

some concluding remarks and suggestions for future studies. 
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2 Method and Model Development 

Here we will discuss the formulation of the simplified lumped-parameter model. First we will 

present the physical situation and the assumptions to develop the mathematical problem. Then 

we will discuss how to apply the physics to create a realistic, yet simple, model of a building. 

We will treat the building as steady state using a quasi-steady temperature bin approach. The 

influence of the neglected transient effects will be addressed later through a comparison with 

TRNSYS in Chapter 3. 

 

2.1 Energy Transfer Equations 

Before we can define the interaction between office zones, we must first discuss the applicable 

heat transfer mechanisms. Heat transfer between building zones can be by one or more of the 

following mechanisms: radiation, conduction, and/or advection.  

Radiative heat transfer can occur between any two surfaces at different temperatures. 

Assuming steady state, the net radiative heat transfer from a surface a at one temperature (Ta) 

and a surface b at another temperature (Tb) is given by [25], 

 ( )4 4rad
ab b a bq fA T Tεσ= −& , (2.1) 

where ε  is the emissivity of the surface, σ  is the Stephan-Boltzmann constant [W/m2K4], f is 

the view factor between surface a and b, As is the area of the surface b [m2], Ta is the 

temperature of surface a [K], and Tb is the temperature of surface b [K]. 

Since the purpose of this study is to predict heat transfer between adjacent office workstations 

it is unlikely that surfaces will have significantly different temperatures. Furthermore the view 
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factors are small and we therefore do not expect to have appreciable radiative heat transfer. 

For this reason we will neglect the heat transfer between zones by radiation.  

Conductive heat transfer refers to the transport of energy as a result of a temperature gradient 

in a stationary medium. From Fourier’s Law [25] we can write the expression for one-

dimensional steady state conduction for a plane wall as, 

 ( )a bcond
ab

kA T T
q

L
−

=& , (2.2) 

where k is the thermal conductivity of medium [W/mK], A is the surface area of medium [m2], 

L is the thickness of medium [m],  Ta is the temperature of surface a [°C], and Tb is the 

temperature of surface b [°C]. 

In our analysis we will examine the heat transfer in office buildings, so it is expected that 

conduction will occur between adjacent workstations across solid boundaries. It is also 

necessary to include the thermal resistance associated with convective heat transfer. 

Convection is the heat transfer between a moving fluid (in our case air) and a surface (in our 

case the wall/cubicle interface). From Newton’s law of cooling [25], 

 ( )conv
s f sq hA T T= −& , (2.3) 

where h is the convective heat transfer coefficient [W/m2K], As is the area of surface [m2], Tf is 

the temperature of fluid [°C], and Ts is the temperature of surface [°C]. The convective heat 

transfer coefficient (h) is dependent on boundary layer conditions that are influenced by a 

number of factors, such as surface geometry and fluid motion (e.g. Reynolds and Grashoff 

numbers). Determining appropriate convective heat transfer coefficients is challenging and will 

be addressed in Section 4.2.  
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The heat transfer through walls by the conduction and convection can be analyzed using the 

concept of thermal resistance. Named for its analogy to electrical resistance (Ohm’s Law), 

thermal resistance is defined as the ratio of the driving potential (temperature difference) to the 

rate of heat transfer. From equation (2.2) and (2.3) we get the thermal resistance for 

conduction and convection, respectively as, 

 ( )a bcond
ab cond

ab

T T LR
q kA
−

= =
&

, (2.4) 

 
( ) 1f sconv

fs conv
fs s

T T
R

q hA
−

= =
&

. (2.5) 

The total thermal resistance is the sum of the individual thermal resistances in series. If we take 

the driving temperature difference between two fluid zones a and b separated by a plane wall 

we can write the total heat transfer tot
abq&  as, 

 tot a b
ab tot

ab

T Tq
R
−

=&  (2.6) 

where, Rtot is the total thermal resistance between zone a and zone b and is given by the sum of 

the individual resistances, 

 1 1tot cond conv
ab ab ab

a b

LR R R
Ah kA Ah

= + = + + . (2.7) 

 

It is often more convenient to write (2.6) in terms the conductance (Utot) which is simply 

defined as 1tot
totU

R
= . As a result (2.6) becomes, 

 ( )tot tot
ab ab a bq U T T= −& . (2.8) 
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Advective heat transfer is the heat flux associated with a fluid flow [26]. In the case of an office 

setting, heat transfer associated with air flow through the door of an office or air flow over one 

workstation into another is considered to be advection, which is represented as, 

 ( )adv
ab a bq m h h= −& & , (2.9) 

where, m& is the mass flow rate [kg/s] and h is the enthalpy [kJ/kg]. If we neglect the latent 

terms and look only at the sensible load, we can assume that the enthalpy is a function of the 

dry bulb temperature only and Eqn. (2.9) reduces to, 

 ( )adv
ab p a bq mc T T= −& & , (2.10) 

where cp is the specific heat of air at constant pressure. 

 

Both condq&  and advq& are linear functions of the temperature difference (T1-T2). If we add these 

equations together, we get the total heat flux between zones a and b, 

 ( ) ( )tot tot
ab p a b ab a bq mc T T U T T= − + −& & , (2.11) 

 ( )tot tot
ab ab a bq U T T= −& , (2.12) 

where ( )eqv tot
ab p abU mc U= +&  is the equivalent conductance. For simplicity we drop the 

superscript eqv and use just Uab. 
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2.2 HVAC Model 

We will assume the HVAC system is an air delivery system and therefore the energy supplied 

to zone i from the HVAC system is given by the corresponding advective flux, 

 ( )HVAC s
i i p iq m c T T= −& & , (2.13) 

where sT  is the supply temperature from the HVAC system. For the time being, the specific 

system which delivers the air is not important; however later in section 2.10 we will discuss the 

introduction of a specific air handling unit. 

In many buildings, ventilation air from the HVAC system is supplied at a single temperature. 

In order to maintain the desired temperature, the airflow rate is modulated either through a 

damper in the diffuser or by cycling air on and off. This is what is known as Variable Air 

Volume (VAV). For VAV, im&  in (2.13) could be different for each zone while sT would be 

constant. Just as easily we could treat use a fixed volume, variable temperature system, where 

s
iT  is different for each room and m&  is fixed. This is equivalent to having a controllable 

heater or chilled water coil in each zone. In both approaches the total energy supplied by the 

HVAC system ( HVACq& ) remains the same. The difference lies solely in the free parameter we 

choose to control. The advantage in choosing a variable temperature system is that when 

following the method described in section 2.5, the resulting system equations remain linear. 

Using the VAV approach will result in a non-linear system of equations. Since the timely 

execution of this system is desired, we will choose the approach to ensure the equations 

remain linear and quickly solvable. We will treat the airflow rate to each zone as constant and 

equal, and modulate the supply temperature for each zone. As a result equation (2.13) 

becomes, 
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 ( )HVAC s
i p i iq mc T T= −& & . (2.14)  

 

2.3 Thermostat Concept 

A thermostat-controlled zone will be defined as a zone which contains a thermostat that 

adjusts HVAC energy flow into the zone. The desired set point temperature, T*, will be 

considered to be perfectly achieved through the HVAC system. The HVAC system will deliver 

the correct amount of heating/cooling energy necessary to maintain the temperature in the 

zone to the desired set point for the zone.  

Each zone in the building must be controlled by one thermostat only; however, the location of 

this thermostat could vary and may not be in the controlled zone. The number of thermostats 

can range from a single thermostat in one zone that controls all other zones, to one thermostat 

in each zone, which control only the individual zone.  

For example, consider 4 zones of equal dimensions as shown in Figure 2.1. Zones b, c, and d 

contain thermostats with set points *
bT , *

cT , and *
dT , respectively. Since zone a does not have a 

thermostat it must be controlled by a thermostat located in another zone, say zone b. Zone b, 

will be supplied with the necessary energy from the HVAC system to ensure that the 

temperature in the zone remains perfectly at the set point temperature, *
bT . This same 

temperature is also supplied to zone a since it is controlled by the zone b thermostat. Zones c 

and d receive energy from the HVAC system independently of zones a and b since they have a 

local thermostat. Therefore, the temperature in zones b, c, and d can be independently set, 

whereas that in zone a cannot.  
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a b 
*

bT  

c 
*

cT  

d 
*

dT  

Figure 2.1 – Example 4-zone domain with thermostats in zones b, c, and d 

 

The location of the thermostats within the building will depend on the nature of the individual 

control and will be discussed as it applies to the particular building in the section on thermostat 

control strategy (Section 2.9). 

 

2.4 Building Model as a Thermal Circuit Network 

With much of the necessary theory reviewed we can now discuss the development of the 

numerical model. The basic model consists of a single story office building divided into n x m 

zones. Each zone will be treated as a well-mixed zone of constant temperature. A single zone 

will correspond to an occupant’s workstation, whether it is a private office or cubicle. Each 

zone will correspond to a node in a thermal resistance network. Continuing with the electrical 

circuit analogy, each node in the network is connected to the other nodes via a thermal 

resistance. Figure 2.2 shows a visual example of a portion of a thermal circuit network. Zone i 

(at temperature Ti) is connected to three neighboring zones (at temperatures Ti-1, Ti+1, and Ti+n) 

by a resistance appropriate to the dividing interface (Rin). It is also connected to the outside (at 

temperature T0) by a resistance appropriate to the exterior wall (Rout). It is in this way that we 

will connect each of the various zones in the building to each other and the outside 

temperature conditions. 
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Figure 2.2 – Cut-out example of a thermal circuit network around zone i  

 

As previously detailed, latent effects will be neglected and all heat transfer between zones will 

be treated as sensible. We will also neglect heat transfer by radiation; however, in Section 4.6 

we will quantify the effect of this assumption. The model described in the following sections 

will be referred to as the Thermal Circuit Temperature Bin (TCTB) model.  

 

2.5 Matrix Equation Formulation   

We will treat the specific heat of air as constant regardless of the air temperature and as a result 

it can be easily combined with the mass flow rate, in an effort to reduce the cumbersome 

equations, as 

 ij ij pC m c= & . (2.15) 

Here, ijm&  represents the mass flow rate of air to zone i from zone j, and pc  is the specific heat 

of air. Cij is now an effective flow rate with units J/sK. We will treat Cii as the effective flow 
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rate coming into zone i from the HVAC system. Take note that we will not be using 

summation notation. 

As described in Eqn. (2.11), since both advection and conduction are a function of the same 

temperature difference it will be convenient to start with an overall conductance, Uij as given 

by, 

 1
ij ij

ij

U C
R

= + , (2.16) 

where Rij is the conductive and convective resistance of the interface (treated as a plane wall) 

between zone i and zone j. We can now define the heat flux between any zones i and j as, 

 ( )ij ij j iQ U T T= −& , (2.17) 

which is Eqn. (2.11) applied to a system of zones. Eqn. (2.17) can apply to heat transfer with 

the outside environment which we will call zone 0, hence the heat transfer with outside and 

zone i can be written as, ( )0 0 0i i iQ U T T= −& . 

 

2.5.1 Supply Temperature 

The supply temperature for each zone is dependent on the thermostat controlling that zone. 

We need a linkage operator, L, which given the location of thermostats within the building, 

defines which zones are controlled by which thermostat. Since, by rule, a zone may be 

controlled by only one thermostat we will define the linkage between each room with the 

linkage operator matrix L, defined such that Lik=1 when zone i is controlled by a thermostat in 
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zone k, otherwise Lij=0. To illustrate the application of L, let us revisit the earlier example of a 

2x2 building consisting of four zones numbered 1, 2, 3, and 4. 

 

1 2 
*

2T  

3 
*

3T  

4 
*

4T  

Figure 2.3 – Example 4-zone domain with thermostats in zones 2, 3, and 4. 

 

Zones 2, 3, and 4 have their own thermostats that will control each room respectively. Zone 

2’s thermostat will also control zone 1. As a result, L12=1, L22=1, L33=1, L44=1, and all other 

elements of the L matrix are zero. For this 4-room example the entire L matrix would then 

look like,  

 

0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

L . 

 

Notice the sum of every row is identically equal to one. This is a check that a zone is not being 

controlled by more than one thermostat. In more general terms, for any zone i,  

1
1

N

ik
k

L
=

=∑ . 
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Using the L matrix, and Eqn. (2.14), we can define the heat flux supplied by the HVAC system 

for zone i as, 

 ( )
1

N
HVAC s
i ii ik k i

k
Q C L T T

=

= −∑& , (2.18) 

where s
kT is the supply temperature from the HVAC system to zone k, *

kT  is the thermostat 

setpoint for zone k, and Ci is defined between zone i and the HVAC system as described 

above by Eqn. (2.15).  

For example, if zone i contains a thermostat, Lii=1 and therefore ( )*
,

s
i HVAC ii i iQ C T T= −& . This 

is simply Eqn. (2.14) with the assumption that the zone temperature achieved is equal to the 

thermostat set point temperature. ( )*
i iT T= . 

 

2.5.2 Energy Balance 

Now we will consider the entire building as a system of zones. Since the model is steady state, 

from the first law of thermodynamics [26], for any zone i the sum of the heat fluxes into and 

out of the zone must sum to zero, 

 0Q =∑ & , 

 0
cond adv cond HVAC

i ii
Q Q Q

+
+ + =∑ ∑& & & . 

Here we break the heat flux into three unique types: conduction and advection (cond + adv), 

internal heat generation (gen), and HVAC supplied energy (HVAC). Substituting the 

appropriate terms, as detailed in the previous sections above, for any zone i in subscript 

notation we get, 
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 ( ) ( )
0 1

0
N N

s
ij j i i i i ik k i

j k
U T T G C L T T

= =

− + + − =∑ ∑ . (2.19) 

Here we introduce Gi as the sum of the internal heat generation sources (computer, person, 

lighting, etc.) within zone i (see section 2.8.3 for more detail). Notice that we will include the 

outside as zone 0 in the first sum. We can write (2.19) for zone k, which we will define as a 

local thermostat-controlled zone (i.e. zone k has a thermostat set to temperature *
kT ):  

 ( ) ( ) ( )* * *
0 0

1
0

N
s

k k kj j k k kk k k
j

U T T U T T G C T T
=

− + − + + − =∑  (2.20) 

Since zone k is a locally controlled zone we know *
k kT T= . Rearranging and solving for the 

only unknown, s
kT , 

 ( )* *

0

N
kjs k

k k j k
j kk kk

U GT T T T
C C=

= − − +∑ . (2.21) 

Combining and simplifying equations (2.19) and (2.21) we get, 

( )

0 0
1 0 1 1

*
* *0

0
1 1

.

N N N N
k j i k j

i j j i j i i i i i i i i
j j j k k k

N N
k k i

i i i k k k j k
k jk k k k k k

U L T
U T U T C T C U T G

C

U T GC L T T U T
C C C

= = = =

= =

− − − = − −

⎡ ⎤
− − + − +⎢ ⎥

⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑
(2.22) 

We can re-write equation (2.22) in matrix notation, with the unknown temperature vector T, as 

in equation (2.23). 

 =AT B , (2.23) 

where, 
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1

,
N

kj ik
ij ij ii

k kk

U L
A U C i j

C=

= − ≠∑ , 

0 1

N N
ki ik

ii ij ii ii
j k kk

U LA U C C
C= =

= − − −∑ ∑ , 

( )
*

* *0
0 0 0

1 1

N N
k k i

i i i ii ik k kj k
k jkk kk kk

U T GB U T G C L T T U T
C C C= =

⎛ ⎞
= − − − − + − +⎜ ⎟

⎝ ⎠
∑ ∑ . 

 

Eqn. (2.23) now gives us a linear set of equations which we can use to solve for the unknown 

zonal temperatures for any given thermostat control strategy (i.e., any Lik), building 

conductances (Uij), and outdoor temperature (T0). The unknown temperatures need to be 

found only in the zones without local thermostats because of the assumption that the 

thermostat set point temperature is the zone temperature. In these thermostat-controlled 

zones we must find the local supply temperature. The local HVAC supply temperatures can be 

found by substituting the zone temperatures into (2.21). For a given T0, L, U, and T* set 

points we now can find the corresponding zonal temperatures and local HVAC supply 

temperatures.  

Had we chosen to use a VAV system we would have been unable to successfully create a linear 

system. This would have lead to the product of unknown temperature (TiTj) terms in equation 

(2.22) and we would have been unable to solve the system as neatly. While solving a non-linear 

system is possible, it would require an iterative process and slow the computation time 

considerably, thus making it unsuitable for optimization. 
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2.6 Building Load 

The building load can be determined using the zone and supply temperatures found in Section 

2.5. The building load will be defined as the rate of sensible cooling and/or heating energy 

supplied by the HVAC system. This number is independent of any HVAC equipment (see 

Section 2.10 for equipment calculations). Eqn (2.18) gives an expression for the power (rate of 

energy) supplied to each zone by the system. We can sum heating and cooling power 

separately as, 

 
1

1

if 0,
,

0 otherwise

if 0,
.

0 otherwise

HVAC HVACN
i i

cool
i

HVAC HVACN
i i

heat
i

Q Q
Q

Q Q
Q

=

=

⎧ ⎫<
= ⎨ ⎬

⎩ ⎭

⎧ ⎫>
= ⎨ ⎬

⎩ ⎭

∑

∑

& &
&

& &
&

 (2.24) 

 

2.7 Temperature Bin Method 

The model, as described thus far, is inherently steady state. As mentioned, the outdoor 

temperature (T0) is assumed to be constant or quasi-steady. Since outdoor weather is transient 

by nature, an approximation must be made for computing the annual energy consumption. 

Here we will use a common method used in building energy simulation known as the 

temperature bin method [27]. The yearly temperature profile of a city is grouped by the 

number of hours per year in various temperature intervals (bins). The temperature bin method 

involves computing the building energy consumption as a steady state calculation for each 

constant outdoor temperature bin and then multiplying by the number of hours in each bin. 

Common practice in the U.S. is to use 5°F bins, but since we will be using Celsius as the unit 

for temperature, 3°C bins will be used. Bins will be referred to as the average bin temperature, 
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as this is the value that will be used in the energy calculations. For example, the 19°C bin 

consists of temperatures between 17.5°C and 20.5°C. See Table 6.1 for a complete list of 

temperature bin data.  

 

2.7.1 Typical Meteorological Year (TMY2) 

The National Renewable Energy Laboratory (NREL) has produced hourly values of 

metrological data for a 1-year period for hundreds of US locations [28]. Temperature, solar 

radiation, wind speed, and so on were recorded for a 30 year period from 1961-1990. The 

average data from this 30 year period is stored in what is commonly called TMY2 (Typical 

Meteorological Year) files. The TMY2 data is a collection of typical values for a given location, 

not extremes, as they were intended to be used for computer simulations of building and solar 

systems. Since the TMY2 data contains dozens of meteorological phenomena that are beyond 

the scope of this model, only the hourly temperature data, for all 8760 hours per year, was 

extracted for the cities described below. 

 

2.7.2 DOE Climate Zones 

The US Department of Energy (DOE) has developed a new classification for US climates that 

will be adopted by the new energy codes and standards [29]. The classification system divides 

the country into 8 zones based on dry bulb temperature with 3 further subdivisions (A, B, and 

C) based on moisture (Figure 2.4) [29]. For each zone, a representative US city was chosen 

based on the following three criteria: 

1. The city should have average weather conditions of the climate zone; not favoring 

mild or harsh conditions. 
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2. The city should preferably be located centrally within the zone. 

3. The city should be close to where buildings are predominately located (population 

centers). 

Given the above criteria, 15 representative cities were chosen, by DOE, to represent the 

climatic diversity of the US as shown in Table 2.1. Note that zones 1B and 5C do not occur in 

the US. It will be the temperature data, extracted from TMY2 data files, from these 15 cities 

that will be used in the TCTB (Thermal Circuit Temperature Bin) model.  

 

 
Figure 2.4 – Map of DOE US climate zones [30] 
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Table 2.1 – DOE climate zone definitions and representative US cities [29] 

Zone No. Climate Zone Name and Type Representative US City TCTB City No. 

1A Very Hot – Humid Miami, FL 1 

1B Very Hot – Dry --- --- 

2A Hot – Humid Houston, TX 2 

2B Hot – Dry Phoenix, AZ 3 

3A Warm – Humid Memphis, TN 4 

3B Warm – Dry El Paso, TX 5 

3C Warm – Marine San Francisco, CA 6 

4A Mixed – Humid Baltimore, MD 7 

4B Mixed – Dry Albuquerque, NM 8 

4C Mixed – Marine Salem, OR 9 

5A Cool – Humid Chicago, IL 10 

5B Cool – Dry Boise, ID 11 

5C Cool – Marine --- --- 

6A Cold – Humid Burlington, VT 12 

6B Cold – Dry Helena, MT 13 

7 Very Cold Duluth, MN 14 

8 Subarctic Fairbanks, AK 15 

 

2.7.3 Population Weighting 

To capture the relative importance of each climate zone we can weight their importance based 

on total population within each zone. Along with a description of the climate zone every US 

county and the climate zones to which they belonged were included in the new climate 

definitions. Using the 2000 United States Census Bureau [31] county population data, an 

approximate total of the number of people living in each climate zone was calculated. Figure 



Report No. DE-FG02-03ER63694-F1 

 

 

 

30

2.5 shows the approximate zonal population per zone. It can be quickly observed that zones 

4A (Baltimore) and 5A (Chicago) are by far the most populated of the climate zones. 
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Figure 2.5 – Total population in each climate zone (US Census Bureau 2000) 

 

2.7.4 Work Day Bins 

Since this study was focused on office buildings, it was desired to monitor the energy usage of 

the building during occupied hours only, since it is common to have an office building that is 

largely unoccupied during nighttime hours. During these unoccupied hours, the HVAC system 

is set back to a point of minimal energy usage since occupant comfort is no longer a priority, 

and for this reason will be neglected. Also, during unoccupied hours, it is unlikely to observe a 

difference between conventional and personal control, since unique temperatures are no 

longer necessary and both will be operating at similar set back temperatures. Therefore, it was 

decided that only the hours between 6am and 7pm, should be observed. The hourly data 
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provided by the TMY2 was truncated between 7pm and 6am, 7 days a week, so only the 4750 

hours corresponding to the intervals within this time frame were preserved. The temperature 

bin intervals as described above will remain the same, however the hours per bin will be 

adjusted to include only the 4750 work day hours. Figure 2.6 shows an example histogram of 

hours per bin for the work day time frame.  

 

 

Figure 2.6 – Histogram of the number of work-day hours per temperature bin for Chicago, 
IL (City #10)  

 

The work day hours could be further truncated to exclude weekend hours, however this was 

not done for two reasons. First, weekends do not fall on the same days every year and 

therefore there is no reason to assume that weekend weather will be any different that nearby 

weekday weather. Second, it is not uncommon for some offices operate six or seven days a 

week (e.g. call centers). Therefore, for the purposes of this study we will include all seven days 
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a week. If it were desired to calculate the energy usage for only the weekdays we could use a 

5/7 multiplier to scale accordingly. 

 

 

2.8 Baseline Building Model 

In this section, the specifics of the baseline building model will be discussed. Details of the 

building layout, building envelope materials (e.g. walls and windows) and the approximations 

regarding human occupants and other heat gains will also be outlined. 

 

2.8.1 Building Layout and Geometry 

As formulated, the matrix equations are capable of modeling any rectangular building of n x m 

zones. Typical office buildings are quite varied is size, shape, and interior layout. To get an 

understanding of an average office building we will need to make some simplifying 

assumptions about the layout of a building. We will neglect corridors hallways etc, as they tend 

not to be a primary place of occupancy for office workers. Also, we would like a significant 

number of offices/workstations inside the building to better account for the variation in 

personal preference. 

For the baseline building model, a square building consisting of 49 square zones (7x7) was 

chosen. Figure 2.7 shows a schematic of the floor plan of the baseline building. Each room is 

identical in dimensions (Table 2.2) with a total zonal volume of 36.75m2. The only difference 

between zones is that each exterior wall of a perimeter zone will have a 5m2 window, the 

details of which are explained in Section 2.8.2. This configuration creates a large core of 25 
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zones that do not have an exterior wall. This is quite common in large office buildings with a 

significant concentration of workstations in the central core.  

 
Figure 2.7 – Baseline building model floor plan 

 

Table 2.2 – Baseline building model zonal physical dimensions 

Dimension Area (m2) 

Interior wall 10.5 

Exterior wall (including window) 10.5 

Exterior window 5.0 

Ceiling/Floor 12.25 

 

2.8.2 Thermal Resistance 

Integral to the nature of the building model is the numerical values for the thermal resistances 

between adjacent zones and the outside. Table 2.3 lists the values of the thermal resistances 
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used in the baseline building model. The partitions between adjacent workstations, for the 

baseline case, will be treated as interior walls, i.e. private offices. Later, in Section 4.2, the 

interior resistance will be modified to a value more appropriate to model cubicle workstations 

with partial height partitions. 

 

Table 2.3 – Thermal resistance values in baseline building model. 

Type Notation Value Notes 

Interior wall riwall 0.392 m2K/W Gypsum wall board wood frame [27] 

Exterior wall 

(and roof) 
rewall 2.47 m2K/W Insulated wood frame [27]  

Exterior window rwindow 0.353 m2K/W Double paned air-filled window [22] 

Inside convective heat 
transfer coefficient hin 3.06 W/m2K Common building energy simulation 

indoor value [22] 

Outside convective 
heat transfer 
coefficient 

hout 17.78 W/m2K Common building energy simulation 
outdoor value [22] 

 

It is important to note the difference between the lower case r and upper case R. A lower case 

r has the units m2K/W while the upper case includes the area of the interface and has units 

K/W. Simply, R r A= . The thermal resistance published for building materials is the lower 

caser r, however for building energy calculation purposes we need the overall interface 

resistance (R). 

The values listed in Table 2.1 provide a means to calculate to resistance matrix (Rij) used in 

Eqn. (2.16). Before the matrix can be constructed, overall interface resistances (Rtot) must be 

calculated as shown in Eqn (2.7). For example, the resistance of an interface between a zone 
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and the exterior consists of an inside convective heat transfer coefficient in series with the 

combination of the exterior wall and window in parallel, and then an outside convective heat 

transfer coefficient given by, 

 1 1 1
ext

ewall windowin out

ewall window

R A AAh Ah
r r

⎛ ⎞
⎜ ⎟
⎜ ⎟= + +
⎜ ⎟+⎜ ⎟
⎝ ⎠

, (2.25) 

where, A is the total wall area including windows [m2], Aewall is the area of exterior wall [m2], 

Awindow is the area of exterior window [m2], hin is the inside convective heat transfer coefficient 

[W/m2K], hout is the outside convective heat transfer coefficient [W/m2K], rewall is the exterior 

wall resistance [m2K/W], and rwindow is the exterior window resistance [m2K/W]. 

Determination of convective heat transfer coefficients is difficult to approximate with a single 

number since they are inherently dependent on many variables such as surface geometry, fluid 

motion, etc. The values chosen represent common building energy simulation estimates. As 

mentioned, the interior resistance values will be modulated later and it will be possible to 

determine the importance and influence of the convective heat transfer coefficients.  

 

2.8.3 Internal Heat Generation 

Inside each zone there was an average person doing moderate office work, a desktop 

computer with flat panel monitor, and lighting. The specific heat gain values used, obtained 

from the ASHRAE handbook of Fundamentals [27], are show in Table 2.4. Note that since 

the model does not account for humidity, the latent gain of the occupants will not be 

considered. Therefore, the total internal heat gain in each zone is 260 W. This is the value that 

will be used for Gi in equation (2.23). 
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Table 2.4 – Internal heat gains in each zone [27]. 

Source Gain Notes 

Person 75 W  Moderate seated office work 

Only sensible gain (note: latent = 55W) 

Computer CPU 55 W Average computer 

Computer Monitor 55 W Average small monitor 

Printer 10 W Small personal desktop printer, idle 

Lighting 65 W Typical dual lamp fluorescent fixture 

 

2.8.4 Infiltration 

Infiltration is the unintentional air leakage through small cracks in the building envelope due to 

a pressure difference (from wind, mechanical ventilation, stack pressure, etc.) across the 

opening. Infiltration will not be considered explicitly (see section 2.8.5) in this study for a few 

reasons. First, commercial building envelope leakage tends to be much less than that of 

residential buildings. Commercial buildings tend to have a more airtight construction and their 

ventilation systems are typically designed to minimize infiltration by providing a slight 

pressurization [27]. In buildings with large cores, as commercial buildings often have, the effect 

of the perimeter air leakage becomes less significant. Also, infiltration through the building 

envelope tends to be much less than that of internal passages (elevator shafts etc.) [27].  
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2.8.5 Airflow Rate and Ventilation 

The airflow rate for each zone was chosen to be a standard 5 ACH [2], of which a standard 20 

cfm was fresh, outdoor air, while the remaining was re-circulated air. The fresh air was 

introduced to each zone at outdoor conditions, before the heat balance. This 20 cfm will be 

assumed to be much larger than any possible infiltration to the zones. Converting 20 cfm to SI 

units, we get an outdoor air flow rate of 0.00944 m3/s. For our baseline building, with an 

office volume of 36.75m3, we get a total airflow rate of 0.051 m3/s (5 ACH). Applicable air 

properties used in the calculation of the associated advective heat flux are listed in Appendix 

6.2.  

 

2.9 Thermostat Control Strategy 

With the physical building described, we are now faced with the task of modeling the use and 

energy consumption of the distributed environmental control systems, and the comparable 

traditional systems. We suggest the phrase “Have It Your Way” or “HIYW” to refer to the 

personal control case, where each occupant has a thermostat in his/her office or workstation 

with the ability to control its environment. With a conventional system, the system seeks to 

achieve the same temperature in every zone in the building. For this case, we suggest the 

phrase “One Size Fits All” or “OSFA,” meaning everyone gets the same. 

 

2.9.1 Occupant Comfort Model 

In Chapter 1 we discussed the inherent difference in personal preference of temperature. 

Unfortunately, standards like ASHRAE 55-2004 are concerned mainly with the average 

comfort of a population. The individual preference is not of addressed by the standards, only 
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the aggregate of the group. Ari et al. [32] proposed an individual comfort model derived from 

the published ASHRAE standard. The comfort model consists of a Gaussian distribution for 

neutral temperatures (the temperature at which an individual occupant votes 0 on Fanger’s 

thermal comfort scale [3]), and a Gaussian distribution for individual temperature tolerance 

range, ΔT (the sensitivity to deviations from the neutral temperature). For this study we will 

only employ the neutral temperature distribution and study the effect of the temperature 

tolerance only parametrically. A detailed optimization study accounting for the variation of 

both neutral temperature and ΔT from one individual to another is described in Ari, Cosden, 

et al. [32]. The mean of this neutral temperature distribution is 24°C with a standard deviation 

of 1.2°C. We can sample randomly from this distribution to obtain a population for our 

building. Figure 2.8 is an example histogram of 49 individuals’ neutral temperatures.  

 
Figure 2.8 – Histogram of 49 random individuals’ neutral temperature setpoints taken from 

Ari, Cosden et al. [32] Gaussian distribution  
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These individuals could then be assigned randomly to zones, or “offices,” in the building 

model as their prescribed workstations (Figure 2.9). Note that a different random selection of 

49 individuals from the population distribution could produce a different histogram. 

 

 
Figure 2.9 – Example individuals’ neutral temperatures distributed randomly in building 

 

2.9.2 Conventional Control 

We would like to mimic conventional practice as closely as possible, which usually means 

attempting to provide a building with a uniform temperature through a small number of 

thermostats. In deciding where to place thermostats we will take advantage of the nature of the 

7x7 model assumptions. As described before the baseline building model has three types of 
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zones with unique interfaces with the exterior: corner, perimeter, and center zones. Since we 

do not consider any potential asymmetries with the outside temperature (i.e., solar radiation, 

directional wind) Ui0 has three unique values corresponding to these 3 types of zones. 

Therefore, if we place a single thermostat, each set to the identical temperature, in one zone of 

each type (corner, perimeter, and center) and use that thermostat’s signal to control the other 

zones of like type, we can achieve a uniform temperature distribution in the building (OSFA). 

Figure 2.10 shows the placement of three thermostats x, y, and z: one in each type of zone. 

The zones controlled by these thermostats are correspondingly shaded. 

 

 
Figure 2.10 – Thermostat placement and controlled zones for OSFA  

 

As a result, if we eliminate heat transfer between interior zones by having the same 

temperature in every zone, the only heat transfer term that is different between zones is with 

the outside. Hence, the building can be held at a constant temperature through three 

strategically placed thermostats, each set to the same temperature. While this may not be 

entirely realistic, it gives the best possible outcome of a conventional approach. Deviations 

from this (two thermostats, etc.) would cause temperatures to differ in various zones in the 

building and would not follow the ASHRAE guidelines as closely. 
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Also, to get as close as possible to the ASHRAE guideline ideal, OSFA thermostats will each 

be set to 24.0°C, the mean neutral temperature for a population distribution. Figure 2.11 

shows the OSFA temperature distribution in the 49-zone building. As expected the 

temperature in each zone is exactly 24.0°C. 

 
Figure 2.11 – OSFA temperature distribution in baseline building 

 

2.10 Energy Calculation 

For the purpose of this study, we assumed that the HVAC system of the building consists of a 

roof top heat pump, furnace, and an indoor fan. The heat pump is solely used to provide 

cooling while the furnace solely provides heating. The indoor fan, used to carry conditioned air 

to the offices, is the same for both the furnace and the heat pump 
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2.10.1 Heat Pump Model 

The model for the roof top heat pump is based on the Carrier 10-ton Weathermaker® 

50TFQ012 [33]. This is a standard efficiency, constant speed, heat pump equipped with an 

economizer. The 10-ton model was chosen to provide realistic coefficient of performance 

(COP) and capacity data for a heat pump of approximate size for the 49 zone, 600 m2 building. 

Capacity scaling of the heat pump will be discussed in the following section. Performance data, 

published by the manufacturer is available for the heat pump for a variety of indoor 

temperatures, outdoor temperatures, and airflow rates. The data was published for four 

discrete flow rates. Since we want to provide the 49-zone 1800 m3 building with approximately 

5 ACH, of which between 3.5 and 4 ACH (3700cfm and 4200cfm) is recycled indoor air, we 

will choose the closest published indoor return-air fan setting, 3750 cfm. Table 2.5 shows the 

performance data for a return-air flow rate of 3750 cfm. Also shown in Table 2.5 is the 

calculated energy efficiency ratio (EER), which is defined as the ratio of the total cooling 

capacity (TC) and the compressor power input (Pcomp). 

 

 

Table 2.5 – Manufacturer’s published cooling data for Carrier WEATHERMAKER 
50TFQ012 [33] standard efficiency 10-ton heat pump operating at 3750 cfm, and calculated 

EER.  

Ewb is the Entering Wet-bulb temperature, Pcomp is the compressor motor power input, TC 
is the Total Capacity (1000Btuh) gross, and EER is the calculated energy efficiency ratio. 
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Indoor Entering Air – Ewb (°F) Temp (°F) Outdoor 

Entering Air 

(Edb) 87 81 75 

TC 134.2 126.2 116.2 

Pcomp 8.54 8.34 8.04 75 

EER 15.7 15.1 14.5 

TC 131 122 112.4 

Pcomp 9.5 9.24 8.98 85 

EER 13.8 13.2 12.5 

TC 126.2 117.4 107.4 

Pcomp 10.46 10.18 9.9 95 

EER 12.1 11.5 10.8 

TC 122.4 112.4 102.8 

Pcomp 11.64 11.28 10.9 105 

EER 10.5 10.0 9.4 

TC 116.6 107 98 

Pcomp 12.78 12.42 12 115 

EER 9.1 8.6 8.2 

TC 110.4 101.2 93.6 

Pcomp 13.96 13.62 13.22 125 

EER 7.9 7.4 7.1 

 

The published data needs to be converted to appropriate SI units (°F to °C and BTUh to kW) 

and since the TCTB model does not account for humidity the web bulb temperatures need to 
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be approximated by equivalent dry bulb temperatures. All entering wet bulb temperatures were 

converted to equivalent dry bulb temperatures at 50% relative humidity. Then, the COP (like 

the EER in the other units) can be calculated from, 

 
comp

TCCOP
P

=  (2.26) 

where, TC is the total heat pump capacity in the cooling mode [kW], and Pcomp is the 

compressor motor power input [kW]. 

Figure 2.12 shows calculated COPs for various outdoor and indoor dry bulb temperatures. 

Also shown are the best-fit linear trend lines used to interpolate and extrapolate the COP data 

when necessary. The calculated COP data, along with the extrapolated values, will be used to 

create a table look-up for the model heat pump.  
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Figure 2.12 – Calculated COP for three indoor dry bulb (db) temperatures for 10 ton, 

constant speed, standard efficiency, Carrier rooftop heat pump 

 

From our previous calculations, coolQ&  in equation (2.24) is the total amount of cooling energy 

required by the building that must be provided by the heat pump. To convert this to electrical 

energy, we must determine the power required to run the compressor (Pcomp). To do this, we 

simply calculate the average building return temperature (mean of the zonal temperatures) 

along with the outdoor dry bulb temperature (T0) and find the corresponding COP. Then the 

power used by the heat pump, which we will now call hpP  is given by, 

 cool
hp

QP
COP

=
&

. (2.27) 
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This equation is only valid if coolQ& is equal to the total capacity (TC) of the heat pump and does 

not account for the cyclic degradation at part loads. We must account for the fact that if the 

required load is less than the total capacity, then the heat pump will not operate at full 

efficiency (i.e. lower COP). 

 

2.10.1.1 System Capacity 

As seen in Table 2.5 the manufacturer publishes the total heat pump capacity (cooling) 

depending on the indoor and outdoor air conditions. Following the same procedure as the 

COP, the capacity data was converted to kW and the wet bulb temperatures were converted to 

corresponding dry bulb temperatures at 50% relative humidity. The capacity was then plotted 

as a function of indoor and outdoor dry bulb temperature along with the best-fit linear trend 

line as shown in Figure 2.13. These capacities will be used as a table look up in the heat pump 

model and cyclic degradation calculations.  
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Figure 2.13 – Cooling capacity for three indoor entering dry bulb (Edb) temperatures for 10 
ton, constant speed, standard efficiency Carrier rooftop heat pump 

  

The capacity of the heat pump required for the selected building is expected to change 

significantly in each climate location. It would be unwise to design a building with the same 

size heat pump in Fairbanks, AK as in Phoenix, AZ. Until now all calculations have been 

assuming the standard 10-ton heat pump data as published by Carrier. To approximate the 

varying sizes of heat pumps a scaling factor will be used from the baseline 10-ton unit. The 

scaling factor will be based on the proper sized heat pump for each city as outlined in the 

section on climate zones. 
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To properly choose the size of a heat pump, we will use the maximum design temperature 

method [27]. The design temperature is that which is not exceeded more than a prescribed 

maximum percentage of time in each city. Common practical design temperatures are 0.4%, 

1%, and 2%. The 0.4% design temperature is one that is not exceeded more than 35 hours per 

year. Because 35 hours is very small in comparison with a yearly simulation, we will use a 0.0% 

design temperature to simplify calculations. The 0.0% design temperature is the maximum 

temperature for each representative city, as listed in the TMY2 file. To determine the total 

cooling capacity (TC) the last non-zero-hours bin temperature was used as the outdoor 

temperature in the TCTB model.  

The baseline building model (Section 2.8) set up was used in the computer model (Section 

2.11). The total cooling load ( coolQ& ) calculated is the required cooling power to be supplied by 

the heat pump. This cooling load was set as the total capacity for heat pump for each city. The 

ratio of these calculated capacities and the total capacity of the 10-ton heat pump were found 

to determine the necessary scaling of the manufacturers data (Table 2.6). These ratios will be 

used as the scaling factor for the heat pump size, i.e. each city will have a heat pump with a 

capacity matching the design temperature load. In reality, an installer will choose a 

manufacture’s size just larger than this capacity, which may be quite different from our scaling 

factor given the discrete number of capacities within a heat pump product line. 

 

 

Table 2.6 – Ratio of 10-ton capacity heat pump with required building capacity for each city. 
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TCTB City 
No. Representative US City Ratio of 10-ton Capacity to 0.0% 

design temperature required capacity 

1 Miami, FL 0.721 

2 Houston, TX 0.841 

3 Phoenix, AZ 1.196 

4 Memphis, TN 0.841 

5 El Paso, TX 0.967 

6 San Francisco, CA 0.746 

7 Baltimore, MD 0.841 

8 Albuquerque, NM 0.841 

9 Salem, OR 0.760 

10 Chicago, IL 0.760 

11 Boise, ID 0.967 

12 Burlington, VT 0.841 

13 Helena, MT 0.841 

14 Duluth, MN 0.626 

15 Fairbanks, AK 0.606 

 

 

2.10.1.2 Economizer 

An economizer is an energy savings feature available on many commercial heat pumps 

including the Carrier Weathermaker®. The economizer’s function is to turn off the 

compressor when the ambient conditions are sufficient to meet the building cooling load. The 

heat pump fan operates as normal, supplying some fraction (up to 100%) of outside air directly 

to the occupied zones. 
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Since humidity is not directly considered in the present model, only the ambient dry bulb 

temperature will be used to decide economizer use. The maximum cooling available by the 

heat pump when the economizer is operating, assuming 100% outside air supplied, is given by 

(2.28).  

 ( ),maxecon p amb iQ mc T T= −& &  (2.28) 

Given the specifications of the model, in order to sufficiently meet the entire building load and 

not require the compressor, econ cool
i iQ Q≥& & for all zones i, where cool

iQ&  is the calculated 

required cooling (Section 2.6). That is, the economizer must be able to supply the necessary 

cooling load, using ambient air, for every zone in the building. If this condition is met, we can 

assume the economizer can completely meet the building cooling load and therefore turn off 

the compressor power requirements. Following the same assumption as before, it will be 

assumed that the economizer will provide the necessary cooling by some type of damper 

controlling the fraction of outside air and return air. In other words, the supply temperature to 

each zone can be modulated to provide the necessary cooling, instead of the flow rate (section 

2.2). When ambient and interior conditions make the use of the economizer possible, since 

0hpP = , the power usage of the HVAC system reduces to fanP . Scenarios in which the 

economizer provides on a fraction of the cooling load while the compressor provides the 

balance were not considered. 

 

2.10.1.3 Cyclic Degradation 

The calculated COP data from Section  2.10.1 lists COPs for continuous operation of the heat 

pump at the full capacity possible at eh ambient and indoor conditions. However, only when 
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the cooling load of the building matches the heat pump capacity will it operate continuously. 

Variable speed heat pumps can operate nearly continuously matching the load. A constant 

speed heat pump, as in our study, must cycle on and off at some given rate to match the 

cooling supplied to the building load. This cycling has a negative effect on the efficiency (i.e. 

COP) of the heat pump since the compressor, fans, etc, must overcome inertia upon start up. 

Therefore an approximation of the lowered efficiency must be used. An approximation of part 

load efficiencies for heat pumps, modified to apply to the heat pump COP, is given by [34], 

 ( )( )1 1cyclic cont dCOP COP C PLR= − − , (2.29) 

where COPcyclic is the new COP due to cycling, COPcont is the published COP for continuous 

operation, PLR is the partial load ratio defined as the hourly load divided by the available 

capacity, and Cd is the degradation coefficient. 

If the partial load ratio is one (PLR=1), i.e. the building load exactly matches the capacity and 

there is no cycling, then the equation reduces to COPcyclic=COPcont as expected. Here, the 

available capacity is the total capacity (TC) of the heat pump for a given city as calculated from 

the scaling factor shown in Section 2.10.1.1. The instantaneous load is the building load 

calculated by the TCTB model. The degradation coefficient (Cd), depends on the start up time 

constant and maximum cycling rate of the heat pump. Measured Cd values for typical heat 

pump systems range from 0.10 to 0.20 [34]. For the purposes of this study, Cd=0.20 will be 

used.  
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2.10.1.4 HVAC Fan 

The fan used to deliver the conditioned air from the heat pump will be assumed to run at a 

constant indoor return air rate of 3750 cfm. We will assume that the fan included in the heat 

pump will operate for the furnace as well. From the Carrier published data the fan uses 1438 

W of power at this flow rate [33]. We will use this value whenever the HVAC system (heating 

or cooling) is active. 

 

2.10.2 Furnace Model 

To supply the necessary heating to the building a model of a standard efficiency, natural gas 

fire furnace was used. Commercial furnaces are required by federal law to operate at a 

minimum of 78% annual fuel utilization efficiency (AFUE) [35]. The AFUE is a measure of 

the amount of fuel converted to space heat in proportion to the total fuel entering the furnace. 

High efficiency furnaces, as defined by Energy Star, operate at a minimum of 90% AFUE [35]. 

For our building model an 85% (ηfurnace=0.85) efficient unit was chosen. This efficiency was 

constant regardless of the temperature of the indoor recirculating air and the outdoor 

temperature. As a result, to find the power required to run the furnace for the building we use 

the following equation, 

 heat
furnace

furnace

QP
η

=
&

, (2.30) 

where heatQ& is as defined in equation (2.24). 
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2.10.3 Gas-Electricity Equivalent 

Since the heat pump operates on electricity and the furnace uses natural gas, a direct 

comparison of the energy usage in kilowatt-hours would be misleading. To bring gas and 

electricity to a common, comparable quantity, cost per unit energy supplied will be used. The 

Energy Information Administration (EIA) [36] publishes average energy costs for the United 

States. In 2003, the average cost per kWh in the United States was $0.0765 and the average 

cost per 1000ft3 of natural gas was $8.32. Converting the price of natural gas to kWh (1000ft3 = 

30.2 kWh) we get an average cost for natural gas of $0.0275 per kWh. To convert natural gas 

kW to equivalent electricity kW we use the following equation, 

 
eqv

furnace gas
f furnace

elect

P c
P P

c c
= = . (2.31) 

Here 
eqvfP now expresses the power used by the furnace as an electric equivalent power, still in 

kW, c is the equivalent gas to electricity conversion factor. Substituting celect=0.0765 and 

cgas=0.0275 we get 2.78feqv furnaceP P= , which indicates that natural gas is nearly three times 

less expensive than electricity. 

We now have the ability to calculate the power (and equivalently the yearly energy) used by the 

building in terms of equivalent electric kW,      

 
eqvtot hp f fanP P P P= + +  (2.32) 

2.10.4 Building Load Power  

It is often useful to observe the building power consumption before the HVAC equipment 

calculation. To do this we will assume that the COP for cooling supplied energy is equal to the 

gas to electricity unit price ratio. This is reasonable assuming considering a COP of 
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approximately three and the gas to electricity ratio of approximately three. We can therefore 

express the total load is given by, 

 load cool heatP Q Q= +& & , (2.33) 

where coolQ&  and heatQ&  are the cooling and heating power, as given by equation (2.24). 

 

2.10.5 Yearly Energy Usage 

We now have a method by which to determine the total power usage for the building at a 

given outdoor temperature (T0). As mentioned in section 2.7 the weather bin method uses the 

constant outdoor bin temperature, and calculates the total building power (Eqn. (2.32)) at that 

temperature. The total building power for each bin must then be integrated over the number 

of hours in each bin for a total yearly energy usage. 

 

2.11 Model Implementation 

Until this point, the method by which we solve the building energy problem has been outlined, 

but the implementation has been overlooked. As mentioned earlier, the execution time of the 

code is an important feature for the temperature bin method. In the future it is desired to use 

this model to run optimization exercises which require the model be run thousands of times. 

MATLAB, a commercially available software which stands for matrix laboratory, lends itself well 

to calculations involving matrices and vectors [37]. MATLAB code was written following the 

mathematical description described in this chapter. The complete code is included in Appendix 

6.4. Here, we will show an outline of the format and structure of the code. 
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2.11.1 Algorithm 

Figure 2.14 shows a flow chart depicting the structure of the algorithm used within the code to 

solve for the yearly building energy usage. Figure 2.15 shows in more detail a flow chart of the 

calculations occurring in the bin loop. 

 

2.11.2 Code Specifications 

 The total execution time of the code, for the baseline case, for 15 cities and two control 

schemes (OSFA and HIYW), is approximately 30 seconds on a PC with a Pentium 4 2.4 GHz 

processor with 2 GB of RAM. As we will see later, this is close to two orders of magnitude 

faster than a transient simulation of the same building using TRNSYS. 
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Figure 2.14 – Flow chart of the main structure of the TCTB code 
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Figure 2.15 – Flow chart of bin loop calculations 
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3 Validation 

We would like to have confidence that the results we will obtain are realistic and valid. To 

accomplish this we will compare the computed results from the TCTB model with those 

generated by the industry accepted building energy simulation program TRNSYS. TRNSYS 

provides us the ability to perform a higher fidelity building energy simulation than the TCTB 

model. Most importantly TRNSYS offers a fully transient simulation, which unlike the TCTB 

model can account for the inherent nature of a building and weather time-dependency. Walls, 

especially exterior, tend to be thick with significant thermal inertia necessitating the use of 

transfer functions to capture the transient energy transfer. Since weather is also inherently 

transient, and the TCTB model cannot account for this, it will be useful to compare a 

TRNSYS simulation with a TCTB simulation to determine the importance of the transient 

nature of weather and the thermal inertia of the building envelope.  

 

3.1 TRNSYS Overview 

TRNSYS [22] (TRaNsient SYstem Simulation program), originally developed at the University 

of Wisconsin-Madison in 1975, is now a commercially available program designed for the 

transient simulation of thermal systems, including multi-zone buildings. Users create a text file 

input and TRNSYS, an open-source FORTRAN code, uses a modular approach to solve a 

group of components describing the system. TRNSYS includes a graphical user interface 

through which the user can specify and connect components of the system and set necessary 

simulation parameters (time step, convergence tolerance, etc.).  
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For building simulations TRNSYS has two important software programs: the TRNSYS 

simulation studio (TRNSYS studio) and the building input interface (TRNBuild). First the user 

must specify the details of the building in question in TRNBuild by defining: geometric 

specifications, building construction materials, infiltration, internal heat gains, etc. Then 

TRNBuild creates the Type 56 input files to be used by the TRNSYS studio. Type 56 is the 

name of TRNSYS component corresponding to a detailed multi-zone model. In the TRNSYS 

studio other necessary simulation components are specified including: weather, solar radiation, 

HVAC equipment, etc. Simulation parameters can be modified (simulation start and end, time 

step, etc.) and then the transient simulation can be executed. 

The International Energy Agency, in conjunction with the U.S. National Renewable Energy 

Lab, created a benchmark for building energy simulation programs entitled the IEA Building 

Energy Simulation Test (BESTEST) and Diagnostic Method [39]. The qualification tests start 

with the basic structure of a building and then manipulate it by moving the windows, adding 

exterior shading, changing the wall constructions, modifying the coupling with the ground and 

adding a sunspace. In doing so, any possible bugs in the program should surface and the 

program’s accuracy can be determined. TRNSYS v14.2 was subjected to the simulation 

guidelines of BESTEST and fell with the range of acceptable values for all output parameters, 

and no bugs were found [38].  

  

3.2 Model Details 

In order to compare the TCTB model to TRNSYS a comparable TRNSYS simulation needed 

to be created. Using TRNBuild the baseline building model was created following the same 

guidelines as given in Section 2.8. Since TRNSYS is capable of extremely detailed simulations a 
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certain amount of care needed to be taken to ensure that the two models would be compared 

on equal footing. We want to isolate the temperature bin approximation of the TCTB model 

by making the TRNSYS simulation as close as possible to the TCTB in all respects except the 

transient nature. 

 

3.2.1 TRNSYS Building Model  

The baseline building geometry was created in TRNBuild as shown in earlier in Section 2.8.1. 

Internal heat generation was transferred purely by convection (no latent or radiative 

components). Outside ventilation was assigned to each room. Humidity ratios were set to zero 

and all humidity calculations were turned off in TRNSYS. Solar radiation processors were not 

included.  

The interior and exterior wall materials were chosen, as close as possible to the physical 
make of the walls given in Table 2.3, from the TRNSYS library of common building 

materials. The resulting TRNSYS resistances and convective heat transfer coefficients are 
given below in  

 

 

Table 3.1. Since there are some slight discrepancies between the TRNSYS resistance values 

and the previously used TCTB values (Table 2.3) for the purpose of these comparisons only, 

the TCTB values will be modified to be identical to the resulting TRNSYS resistances.  
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Table 3.1 – TRNSYS baseline case thermal resistances 

Type Notation Value Notes 

Interior wall riwall 0.397 m2K/W Gypsum wall board  with airspace 
between 

Exterior wall rewall 2.34 m2K/W 
Inside surface: gypsum wall board. 
Insulation: rigid foam insulation. 
Outside surface: stucco  

Exterior window rwindow 0.353 m2K/W Double paned air-filled window 

Inside convective heat 
transfer coefficient hin 3.06 W/m2K Recommended value (11 kJ/hm2K) 

Outside convective 
heat transfer coefficient hout 17.78 W/m2K Recommended value (64 kJ/hm2K) 

 

ERC was used with the heating and cooling set points for each room coincident and equal to 

the thermostat set points discussed earlier for OSFA and HIYW. For example, for OSFA each 

zones heating set point and cooling set point was set to 24°C. Then, TRNSYS calculates the 

necessary heating energy required to maintain the zonal temperature at 24°C or if necessary the 

amount of cooling energy required to maintain 24°C. Since the two set points 

(heating/cooling) were coincident there were no floating temperatures. The absolute value of 

the resulting energy demands of each zone could be summed together for a yearly simulation 

to find the total building energy demand1. The TRNSYS yearly building energy demand can be 

compared to the TCTB building load power demand integrated over the year.  

                                                                 
1 This is equivalent to assuming that the COP is equal to the electricity to gas unit price ratio. See Section 2.10.4.  
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3.2.2 TRNSYS Simulation Parameters 

TMY2 weather files were used to provide hourly temperature data for each city. A simulation 

time step of one hour was chosen. When a time step of less than one hour is chosen the 

temperature data from the TMY2 file is interpolated, however, as shown in Table 3.2 there is 

no benefit in using smaller time steps. A single yearly simulation, for one city, executed in 

approximately 10 minutes using a one hour time step. The execution time increased linearly 

with the time step. 

 

Table 3.2 – Effect of TRNSYS simulation time step for baseline building in Chicago, IL 

Time step (h) OSFA Yearly Energy Demand (MWh) 

1 80.548 

0.5 80.564 

0.25 80.613 

 

3.3 Building Energy Load Comparison 

To compare the TCTB model with the TRNSYS model both were used to run simulations for 

all 15 cities with both OSFA and HIYW strategies. To ensure that the HIYW population did 

not skew the results, 10 random populations were chosen. Therefore, for each city a total of 11 

simulations were run. The yearly energy demand from TRNSYS was then compared with the 

building load power demand integrated over the year (8760h) from the TCTB model. Since the 

TRNSYS calculation uses the ERC method, which is before HVAC equipment, we cannot use 

the HVAC power. The calculation of yearly energy demand is identical however. The building 
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power demand per bin is multiplied by the appropriate number of hours per bin for each city 

(Table 6.1).  

The resulting TRNSYS computed energies were then plotted against the corresponding TCTB 

yearly energy for the same city, population, and control strategy. If there was perfect agreement 

between the two models the points would fall precisely along the 45° line.  
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Figure 3.1 – Yearly building energy demand comparison between TCTB and TRNSYS 

models for the baseline building 
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While the two models predict nearly the same energy demand, there are some small deviations. 

Clusters of points on the graph are indicative of a city. For example, the cluster of points at the 

very top right of the plot correspond to the 11 simulations of Fairbanks, AK, while the lower 

most cluster consists of San Francisco, CA simulations. The equation and R2 value on the plot 

are those given if we were to fit the data to a linear trend line forced through zero. Not only is 

the trend line a very good fit (R2=0.9958) but it also gives us an idea about the relative error 

associated with the TCTB model. It reveals that the TCTB model under predicts the energy 

demand as calculated by TRNSYS by only about 0.55%. The agreement with the higher fidelity 

TRNSYS model gives us confidence that the assumptions used in the TCTB model are 

reasonable for yearly energy calculations. Despite the considerable simplicity of the TCTB, it 

appears as though the transient factors, most importantly the thermal inertial of the building 

envelope, do not have a strong influence on the yearly energy consumption.  
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4 Computed Results 

In this chapter we will test a variety of conditions to explore the effect different parameters 

have on the building energy consumption for both HIYW and OSFA. We seek to quantify the 

costs associated with the implementation of HIYW compared to the traditional OSFA. With 

an understanding of the relative influence of the climate and interior partition resistances, we 

can begin to understand the situations in which HIYW could prove to be a feasible solution to 

occupant thermal comfort. Conversely, we will also be able to determine those scenarios which 

would make HIYW a less attractive feature from an energy perspective.  

 

4.1 Baseline Case Results 

The first scenario we will explore is the baseline case as described earlier. Section 2.8 provided 

details of the building geometry, heat loads, and thermal resistances. First we will explore the 

behavior of a single population consisting of 49 individuals chosen randomly from the 

Gaussian distribution described in Section 2.9.1. Later, we will explore the effect of the 

population distribution. 

 

4.1.1 Building Energy Load  

The first item of interest is the building energy load as calculated in Equation (2.33). This only 

looks at the energy demand of the building, without regard for equipment or location. Figure 

4.1 shows a plot of the OSFA (Tin=24°C) power demand of the building as a function of the 

outdoor temperature. The behavior is as expected. The V shape of the graph reaches a 

minimum at a value lower than 24°C due to the large internal heat gain of the building. The 
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linear portion of the curve to the right of the minimum represents cooling only, while the 

linear portion to the left of the minimum represents heating only. The rounding of the curve 

near the minimum consists of some combination of heating and cooling. The curve never 

reaches zero because nature of the three unique exterior interfaces within the building. For 

example the exterior offices may need to be heated when the interior zones are still receiving 

cooling. Figure 4.2 illustrates this phenomenon when the outside temperature is 13°C. The 

figure shows the power consumption of each individual room in the building. A positive value 

indicates heating, while a negative value indicates cooling. The corner offices require significant 

heating (positive), the perimeter offices require a small amount of heat, while all the center 

offices require cooling (negative).  
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Figure 4.1 – OSFA building load power usage for bin temperatures for baseline case (no 

HVAC equipment) 
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Figure 4.2 – OSFA individual rooms power usage for Tout=13°C 

 

When we allow occupants to choose their own temperatures qualitatively the building power 

consumption behaves very similarly. Figure 4.3 shows the power demand of the building as a 

function of the outdoor temperature for HIYW. The thermostat set points were chosen at 

random from the population distribution, and assigned randomly to an office. The exact 

neutral temperatures (set point temperatures) and their locations are shown in Appendix 6.3. 

Like the preceding OSFA case, the HIYW building has a V shape, with a more pronounced 

curve at the minimum. The difference between the OSFA and HIYW can be seen more clearly 

in Figure 4.4. Here, the points denote the bin values, and we can see that as the bin 

temperature deviates from that at which the building load is a minimum, the difference 

between OSFA and HIYW becomes nearly indistinguishable. Only between bins 4°C and 

19°C is there a noticeable power demand increase associated with HIYW. This fact will be 
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important when we explore the energy consumption of the HVAC equipment as well as the 

overall energy consumption in various cities.  
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Figure 4.3 – HIYW building load power usage for bin temperatures for baseline case (no 
HVAC equipment) 
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Figure 4.4 – Building load power demand comparison between OSFA and HIYW for 

baseline case (no HVAC equipment) 

 

Similar to the OSFA case we can also examine the energy demand of the individual rooms. 

Figure 4.5 shows an illustration of the difference in the power supplied to each room for the 

same population distribution (Appendix 6.3) at an outside temperature of 13°C. Unlike the 

OSFA case, the uniformity in power usage is far less defined. Most of the perimeter zones 

require heating, and most of the interior zones require cooling, however, there are many 

exceptions. For example, zone (1,4) has one of the coldest set point temperatures (22.66°C) 

and therefore requires a significant amount of cooling despite being on the perimeter, while 

both its perimeter neighbors (with set points of 25.74°C and 24.66°C) require heating. 
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Figure 4.5 – HIYW individual rooms power usage for Tout=13°C 

 

4.1.2 Building HVAC Power  

Now that we have computed the building power demand as a function of the outdoor 

temperature we can examine the introduction of HVAC equipment. The power specifications 

of the heat pump, fan, and furnace are outlined in Section 2.10. Unlike the building load power 

demand, the HVAC power usage is now dependant on the location (city) of the building. The 

sizing of the heat pump varies based on the maximum design temperature, and therefore the 

COP (after accounting for cyclic degradation) will not be identical in every city. We will 

explore the difference between cities later, for now let us examine an example city: city #7, 

Baltimore, MD. Baltimore provides us with a good mix of warm temperatures and cold 

temperatures, and is a good example case. Figure 4.6 shows the HVAC power usage for both 

OSFA and HIYW for all applicable bin temperatures. That is, only the non-zero-hours bin 
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temperatures (for the entire year) were used since they are the only realistic possibilities. 

Qualitatively the HVAC power usage curves appear very similar to the building load power 

demand curves shown in Figure 4.4.  
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Figure 4.6 – HVAC power usage for OSFA and HIYW baseline building model case in 

Baltimore, MD (city #7) 

 

First let us analyze the OSFA curve. The curve can be broken down into three sections much 

like the building load power demand was. The first is a cooling only phase from 23°C and 

greater. In this phase every room is receiving cooling from the heat pump. In the second 

section, at 19°C, there is a noticeable dip in the curve. This is due to the presence of the 

economizer. At this temperature (and lower) the outdoor air is sufficient to meet the building 
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cooling load and only the HVAC fan is in use. Remember that the fan uses 1438W, the value 

of the OSFA curve at 19°C, meaning that the entire building is receiving free cooling via the 

economizer, with the only power expense being that of the HVAC fan. The third section is to 

the left of the 19°C bin. At this point zones begin to require heating; first the corner offices, 

then the perimeter offices, and finally the center offices. The curve becomes clearly linear at 

4°C and beyond, since all zones require heating, and cooling is no longer necessary.  

The HIYW curve behaves very similarly to the OSFA, with the same three sections. The key 

difference however, is the temperature at which the economizer becomes active, i.e. the 

second section. At the 19°C bin, the HIYW curve is still in the cooling phase as the 

economizer is unable to meet the cooling load until the 16°C bin. This is compounded by the 

fact that for the chosen population (see Appendix 6.3) one corner office requires heat as early 

as the 19°C bin. At temperatures lower than 19°C offices slowly begin requiring heating, 

depending on the occupants’ neutral temperature and thermostat set point. Once the 

economizer is able to meet the building load, the two curves begin to approach each other. As 

the outdoor temperature decreases, the two curves become nearly coincident. This shows that 

the energy cost incurred by creating small differences in internal temperatures through HIYW 

is significantly smaller than the overall cost associated with the extreme outdoor temperatures. 

The difference between these two curves, and where the differences lie, is critical in 

determining the yearly energy penalty associated with HIYW compared to OSFA.  

Figure 4.7 shows the HVAC power usage for San Francisco. There are two important 

distinguishing features that make this unique from the previous plot. First, within the average 

TMY2 year, San Francisco never reaches outdoor temperatures below the 1°C bin, nor does it 

reach temperatures above the 34°C bin. Hence the HVAC power usage is plotted only over 
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this narrow band of temperatures. Second, the slope of the cooling portion of the curve is 

unique to San Francisco since it is dependent on the specific sizing of the heat pump. A 

smaller capacity heat pump will be more efficient at lower building loads and will therefore use 

less power. 
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Figure 4.7 - HVAC power usage for OSFA and HIYW baseline building model case in San 

Francisco, CA (city #6) 

 

4.1.3 Energy Cost Associated with HIYW for Various Climates1 

Now that we have seen the difference in the HVAC power usage between HIYW and OSFA 

we need to determine the yearly energy consumption. For each city we will now take the 

                                                                 
1 These are non-optimized results. For results of optimization, consult Ari, Cosden, et al. [32]. 
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power usage per bin and multiply by the total number of hours per bin. First we will look at 

the yearly energy usage (8760 hours) and then the work day only usage (4750 hours). 

 

4.1.3.1 Yearly Energy Usage (8760 hours) 
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Figure 4.8 – Yearly energy usage for baseline case for OSFA and HIYW 

 

Figure 4.8 shows the integrated yearly energy usage for the two control strategies: OSFA and 

HIYW. In every case, non-optimized HIYW consumes more energy than OSFA. We can see 

this more clearly in Figure 4.9, which shows the ratio of HIYW yearly energy usage to OSFA 

yearly energy usage. Here, a value of 1 indicates that they use exactly the same amount of 

energy annually, while a value of 1.08 indicates HIYW uses 8% more energy over the course of 
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the year. City #6, San Francisco, CA, deserves special consideration. San Francisco uses the 

least amount of energy, for both control strategies, of any city studied. This is due to the 

frequent use of the economizer. That is, there is a large portion of the year where free cooling 

can be achieved using the economizer, since the outside air temperature is sufficient for 

meeting the cooling needs of the building. In cities with a significant number of hours per year 

in these economizer bins, such as San Francisco, will show the greatest difference between 

HIYW and OSFA. As we saw before in Figure 4.6 and Figure 4.7, once the economizer is able 

to meet the cooling needs of the building there is a sharp drop in power consumption. Also, 

the economizer is unable to meet the cooling load of HIYW at the same outdoor temperature 

as OSFA. This is due to the economizer activation strategy used. The economizer is activated 

only if the needs of every zone can be met, which leads to a smaller ambient temperature range 

when there are 49 different requirements to be met in HIYW, as opposed to three in OSFA. 

The active economizer bins are the only portion of the graph (Figure 4.7, between 10°C and 

22°C) where the HIYW and OSFA curves demonstrate a significant difference in power 

consumption. Integrating this portion of the curve over a large number of hours can create, as 

it does in San Francisco, a substantial difference between HIYW and OSFA. 
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Figure 4.9 – Ratio of HIYW to OSFA energy usage (8760h) 

 

San Francisco, city #6, is decidedly the worst, needing slightly more than 16% more energy to 

provide HIYW over OSFA. Most of the other cities are between 3-8%, while the extremely 

cold Fairbanks, AK (city #15) is less than 2%. Fairbanks is nearly opposite to San Francisco, as 

there are so few hours per year in the economizer bins, the energy cost associated with HIYW 

is nearly the same as OSFA. 
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4.1.3.2 Work Day Energy Usage (4750 hours) 

As mentioned before in Section 2.7.4 we wish to look at the energy usage of the two control 

strategies during the work day hours (6am-7pm only). As we did in the previous section we 

will look at the yearly energy usage and the ratio of HIYW and OSFA. 
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Figure 4.10 – Work day energy usage for baseline case OSFA and HIYW 

 

In Figure 4.10 we can see that qualitatively the energy usage behavior during work hours is 

very similar to the entire year (Figure 4.8). Obviously the total energy consumption for 4750 

hours is less than the 8760 hour case, since we are only considering slightly more than 50% of 

the year. However, since we are considering the work day hours only, the hottest temperatures 

remain since they occur during the daytime, while most of the coldest temperatures are 
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truncated since they occur during the nighttime. Again, San Francisco uses significantly less 

energy than the other cities due to the abundant use of the economizer. Figure 4.11 shows the 

relative energy usage of HIYW to OSFA for the work day hours, and qualitatively it is also 

very similar to the 8760h (Figure 4.9). In fact, most of the ratios are nearly unchanged from the 

full year, with only slight changes on the order of 2%. Not surprisingly, the HIYW/OSFA 

ratio of San Francisco (city #6) increased more significantly, since a majority of the activated 

economizer hours, the hours at which HIYW comes at the largest energy penalty, occur during 

the daytime.  
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Figure 4.11 – Ratio of HIYW to OSFA energy usage (4750h) 
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4.2 Interior Resistances 

Until now we have been studying only the baseline case, which consists of all private offices. 

Now we would like to explore other types of offices including cubicles. The interior wall 

thermal resistance (riwall) in the baseline case corresponded to a common gypsum board inside 

wall. The value of this thermal resistance is well documented. Unfortunately this is not the case 

with partial height dividers such as those used in cubicles. The thermal resistance of the solid 

portion of the divider can be calculated, however the open space above the cubicle must be 

considered. The mechanism for heat transfer between zones is no longer only conduction as it 

was with a solid wall from floor to ceiling. Instead there will likely be some advective heat 

transfer between neighboring zones either above the partitions or through the open doors and 

corridors. As we have discussed earlier, if we neglect the latent loads, we can still write 

advective heat flux with a thermal resistance. However, the true thermal resistance, if one such 

value exists, is not easily calculated. Understanding the airflow behavior between neighboring 

cubicles and other partial height workstations with different temperature distributions is the 

subject of current research, but presently there is no accepted method short of computational 

fluid dynamics (CFD) or detailed measurements to estimate it. Therefore, we will test a variety 

of resistances that will show us the influence the interior partition resistance has on the 

building energy consumption. 

Table 4.1 lists the six unique trial resistances that we will test in using the TCTB model. Trial 

one is the baseline building case, exactly as we have used previously. To approximate a partial 

height thin partition workstation we will use half the thermal resistance of the solid wall. Also, 

we will explore the effect of the inside convective heat transfer coefficient by using a larger 

(and therefore less resistive) value, in trials 4-6. In trials 3 & 6, an open workspace with no 

solid partitions is approximated by using the resistance of the film of air between the zones. 
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Note that the total interior resistance, rint, is just the sum of the wall resistance and two of the 

resistance associated with the convective heat transfer coefficient,  

 int
2

inwall
in

r r
h

= + . (4.1) 

The two convective heat transfer coefficients are due to the presence of two film resistances 

on each side of the partition. As seen in Table 4.1 the inside convective heat transfer 

coefficient can have a significant impact on the overall thermal resistance of the partition. This 

leads to a great deal of uncertainty in the true overall thermal resistance value.  

 

Table 4.1 – Interior resistance trials 

Trial 
No. 

Wall Resistance, 
riwall (m2K/W) 

Inside Convective Heat 
Transfer Coefficient, hi 

(W/m2K) 

Resulting 
Resistance, 

rint (m2k/W) 
Notes 

1 0.392 3.06 1.05 Baseline Case 

2 0.196a 3.06 0.85 Estimated thin partition (i.e. 
cubicle) 

3 -- 3.06 0.33 Approximates open 
workspaceb 

4 0.392 8.29 0.63 Baseline with less 
conservative hi [27] 

5 0.196a 8.29 0.44 Estimated thin partition (i.e. 
cubicle) 

6 -- 8.29 0.12 Approximates open 
workspaceb 

aResistances listed for trials 2 & 5 are approximated. 

bThe true resistance value between open space zones is unknown and the subject of current research. 

Approximated as a single convective heat transfer coefficient 
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To observe the effect of the interior resistance we will start with the baseline case and modify 

only the interior resistances and convective heat transfer coefficients as shown in Table 4.1. It 

is important to note however, that the inside convective heat transfer coefficient for the 

outside walls only will be held at the default 3.06 W/m2K regardless of what the other inside 

convective heat transfer coefficients are. In other words, the total exterior resistance remains 

unchanged throughout all trials. One population (Appendix 6.3) will be used for the HIYW 

control strategy. We will use the HVAC energy usage for work day hours only (4750h). Since 

the OSFA energy usage is independent of the interior resistance, due to the uniform interior 

temperature assumption, we can use it as means for comparison and normalization of the 

HIYW energy usage. For each value of the interior resistance we will take the 15-city average 

of the energy usage. The average, for both HIYW and OSFA, will be weighted based on the 

population in each climate zone as described in Section 2.7.3. Figure 4.12 shows the ratio of 

HIYW to OSFA for the six trials plus an addition trial of rint=0.2 m2K/W. This value was 

needed to clarify the results as seen in Figure 4.12. Since there is a certain level of uncertainty 

with the true resistance value of partial height partitions, the resulting trend is very important. 

Through experimental testing or CFD calculations the true thermal resistance value can be 

found and the proper placement on the curve of partial height cubicles would be known.  
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Figure 4.12 – Relative energy cost of HIYW to OSFA for various internal resistances 

 

The rightmost point on the curve in Figure 4.12 corresponds to the baseline case (trial 1). It 

can be easily seen that slightly reducing the interior resistance from the baseline case has a very 

small impact on the HIYW energy cost. However, as the resistance between personal zones 

approaches that of an open workspace the cost of HIYW climbs rapidly1. It is also important 

to note that in the area of the baseline case, small changes in the resistance would have little 

impact on the overall cost of HIYW. This is especially useful since all interior wall 

constructions will have slightly different thermal resistances, the results shown for the baseline 

                                                                 
1 A well mixed zone assumption, such as the one used here is no longer valid when the individual zones are open to neighboring zones.  
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resistance would be minimally impacted by a slight change in partition thickness or 

construction. 

 

4.3 Effect of Population Distribution 

 

4.3.1 Random Populations in Baseline Building Model 

Until this point we had considered only one group of people inhabiting the building. To 

understand what impact the placement and random selection of the building population has 

on the energy cost we will test 100 different populations. It is expected that there will be 

certain configurations that will result in similar desired temperatures next to each other and 

some configurations that will result in vastly different desired temperatures next to each other, 

however the impact of this on energy consumption is unknown. Each of the 100 populations, 

of 49 people each, will be chosen at random from the given distribution (Section 2.9.1) and 

then assigned randomly to a room in the baseline building model. Figure 4.13 shows the range 

of energy usage of the 100 populations for each city for the baseline case for the work day bin 

hours (4750h). In the plot, the HIYW energy usage is represented by a box and whiskers; the 

box indicates the extents of the upper and lower quartiles (75% and 25%) of the energy usage 

for these trials and the whiskers indicate the range. The line in the middle of the boxes 

represents the median value, although it may be difficult to see where the data is tightly 

grouped. The black diamond indicates the OSFA yearly energy usage for each city.  
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Figure 4.13 – 100 population energy usage comparison for baseline case 

 

In every case except city #1 (Miami, FL) each building population configuration uses more 

energy in the HIYW case than the OSFA case. There was one building population 

configuration that, in Miami used approximately 99.6% of the OSFA energy; for every other 

population HIYW used more energy (see Figure 4.14). The energy usage appears to be a weak 

function of the population within the building. To see the relative effect of the energy cost 

associated with HIYW, Figure 4.14 shows the ratio of the HIYW energy usage of each random 

population to the OSFA energy usage. 
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Figure 4.14 – Ratio of HIYW to OSFA energy usage of 100 random populations for baseline 

case 

 

Here, we can see that the random populations, in most cities can account for approximately 

2.5% increase or decrease from the median value. The obvious exception is city #6, San 

Francisco. As mentioned before San Francisco, unlike the other cities has a temperate climate 

that lends itself well to economizer operation. In the previous plot, Figure 4.13, we saw that 

San Francisco used considerably less energy over the course of the year than the other cities 

(both HIYW and OSFA). Therefore a small increase in HIYW energy could actually be 

significant when compared to OSFA. The effect the random populations have on the energy 

usage in San Francisco is substantial; ranging from 16% to 35% more energy than OSFA. 

Salem, OR, city #9, has the next most adverse climate to personal control, and like San 
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Francisco, the population inside the building has a significant impact on the energy penalty 

associated with HIYW. 

 

4.3.2 Random Populations in Partial Height Partition Building 

Now we will observe the influence of the random populations in a building with partial height 

partitions (cubicles) as in Section 4.2. We will explore the partial height partition with the lower 

overall resistance value of 0.44 W/m2K (trial five in Table 4.1). Figure 4.15 shows the box and 

whiskers plot for the partial height partition case. As before, the box represents the upper and 

lower quartile, the whiskers represent the extents of the data, the line in the middle of the box 

corresponds to the median value, and the black diamond indicates the OSFA energy usage. 
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Figure 4.15 – Energy usage by city for 100 random populations for Rint=0.44 m2K/W 

(partial height partition) 

 

For this smaller interior resistance, across the board HIYW uses more energy than OSFA. 

Also, the populations create a much larger spread in the yearly energy usage compared to the 

baseline resistances (Figure 4.13). The spread is close to symmetric around the median and 

now tends to be ±5% from the median. The energy cost of HIYW as compared to OSFA can 

be seen in Figure 4.16. 
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Figure 4.16 – Range of HIYW to OSFA yearly energy usage by city for 100 random 

populations for Rint=0.44 m2K/W (partial height partition) 

 

Again, city #6, San Francisco, shows a significant dependence on the population in the 

building. The energy increase from OSFA can range from 23% to 78%, depending on the 

specific distribution of people and their desired temperatures within the building. Salem, OR 

(city #9) again shows the second largest energy penalty. As we would expect from our 

experience with one population, the median value of all the cities increased from the baseline 

case (Figure 4.14). However, from this plot we can see that not only the does the median 

increase, but the population has a much larger role in determining the energy cost of HIYW. 
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4.4 Building Size and Shape 

In this section we will explore different building shapes. The baseline case building is a 7x7, 

49-zone building. We will try to keep the total number of zones as close as possible to 49, 

while changing the aspect ratio of the building to other rectangular configurations (10x5 and 

25x2). 

 

4.4.1 10x5 Building 

The first new building shape configuration we will explore is a rectangular 10x5 zone building. 

We will keep all other building dimensions the same as the baseline building case. Figure 4.17 

shows an example of a possible HIYW temperature distribution within the 10x5 building. Like 

the baseline case, OSFA will consist of a uniform 24°C, achieved through three thermostats: 

one for the corner zones, one for the perimeter zones, and one for the center zones.  

 
Figure 4.17 – Plan view of an example HIYW temperature distribution for 10x5 building 
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All building envelope properties are the same as the baseline case. Interior partitions have a 

thermal resistance characteristic of wood frame walls (default baseline). We will observe only 

work day hours. As we did before, to understand the influence of the building inhabitants, we 

will use 100 random populations assigned randomly to rooms. Figure 4.18 shows both the 

range of HIYW yearly energy usage and the OSFA yearly energy usage for each of the 15 

cities. 

 

 
Figure 4.18 – Yearly energy usage for 100 random populations for 10x5 building  

 

The energy usage shown here is very similar to the baseline 7x7 building (Figure 4.13). In fact, 

the OSFA yearly energy usage, which is independent of the building population, is 

approximately 2% larger for the 10x5 building than the 7x7. This would appear to be entirely 
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due to the unavoidable presence of an extra zone (50 vs. 49). To determine if the HIYW 

energy usage was similarly affected let us look at the ratio of the HIYW energy usage and the 

OSFA energy usage (Figure 4.19).  

 

 
Figure 4.19 – Range of HIYW to OSFA yearly energy usage by city for 100 random 

populations for 10x5 building 

 

As with the OSFA energy usage, the ratio between the HIYW and OSFA energy usage for the 

10x5 building is nearly identical to the 7x7 building. The mean value of the 100 energy usage 

ratios for each city is, in fact, less than 0.1% different from mean value for the 7x7 baseline 

case. Clearly the change in shape from 7x7 to 10x5 made no appreciable difference in the 

energy cost associated with the adoption of HIYW. 



Report No. DE-FG02-03ER63694-F1 

 

 

 

93

 

4.4.2 25x2 Building 

The second new shaped building we will model is a 25x2 building. This type of configuration 

could be characteristic of a hallway or corridor lined with offices, or a motel. The 10x5 

building produced nearly identical results to that of the baseline 7x7 building likely because the 

outside wall surface area increased by only 7.1% (see Table 4.2). We would expect the 25x2 

building, due to the significant increase in exterior surface area (92.9%), to be more likely to 

show deviations in energy usage from the baseline 7x7 building. 

  

Table 4.2 – Increase in outside wall surface area from baseline case 

Building Shape No. of perimeter 
walls 

Increase in outside 
wall surface area 

7x7 28 - 

10x5 30 7.1% 

2x25 54 92.9% 

 

 

Since the orientation of the building is not important in the TCTB model, due to the lack of 

solar energy accounting, we will arbitrarily choose the 25 to be in the horizontal direction. 

Figure 4.20 shows one possible temperature distribution within the 25x2 building. As with the 

baseline case, we will set the OSFA thermostats to 24°C. For this building, since there are only 

two unique types of rooms, corner and perimeter, we only need two thermostats, one in each 

type, to ensure a uniform 24°C.  
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Figure 4.20 – Plan view of an example HIYW temperature distribution for 25x2 building 

 

As we did with the previous building shapes, all the baseline case zonal dimensions and 

thermal resistances will be used along with the work day bin hours. For the 25x2 building we 

will also use 100 random populations assigned randomly to rooms. Figure 4.21 shows a box 

and whiskers plot of the energy usage of the 100 HIYW populations and the OSFA energy 

usage for each of the 15 cities.  
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Figure 4.21 – Energy usage for 100 random populations for 25x2 building 

 

At first glance the plot is very similar to the baseline 7x7 building (Figure 4.13) and the 10x5 

building (Figure 4.18) with a slightly smaller spread amongst the HIYW populations. While the 

relationship between HIYW and OSFA and the relative energy usage between cities are both 

very similar to the 7x7 building. The 25x2 building uses more energy in every case. This is 

partially expected since the building contains one more zone (50 vs. 49), however the city 

average increase in OSFA energy usage from 7x7 to 25x2 is 18%, with larger values in the 

colder climates. This rise in energy is a result of the greater exterior surface area and the 

resulting increase in heating required. Our main interest is not in the absolute yearly energy but 

rather the energy cost of the HIYW compared to the OSFA. To explore this case, Figure 4.22 

shows a box and whiskers plot of the ratio of HIYW energy usage and OSFA energy usage.  
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Figure 4.22 – Range of HIYW to OSFA yearly energy usage by city for 100 random 

populations for 25x2 building 

 

This again is very similar to the 7x7 baseline case (Figure 4.14), however there is approximately 

a 5% decrease in the ratio for the 25x2 building, with some cities more than others. 

Nevertheless, San Francisco (city #6) still shows the highest energy cost while the other cities 

are all below 10% more energy than the corresponding OSFA case. The results suggest that 

the increase in yearly energy is a function of the building shape and may significantly affect the 

power consumption for OSFA and HIYW.  
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4.5 Deviation from Neutral Temperatures 

Until this point we have considered HIYW to be achieved by providing every building 

occupant with exactly his/her neutral temperature. This ensures that everyone is perfectly 

satisfied, thus improving comfort considerably from the OSFA, conventional approach, where 

only 80% of occupants are satisfied. It is expected that the majority of people have a certain 

threshold of sensitivity to temperature. That is, small deviations from the occupant’s neutral 

temperature may not be noticeable, let alone negatively impact comfort. Ari, Cosden, et al. [32] 

developed a model for this temperature deviation tolerance, and proposed its relation to 

satisfaction. It may therefore be possible to provide occupants with a temperature very close to 

that which they desire, but with a slight deviation in an attempt to reduce energy consumption. 

This is the motivation behind using an optimization routine to try to maximize occupant 

comfort while decreasing energy usage. 

To observe the potential in pursuing such an approach we will observe the average energy cost 

of HIYW plus some deviation temperature (Tneutral + ΔT). This deviation is the difference 

between the occupants’ neutral temperature and the actual temperature received. We will test 

ΔT from -3°C to +3°C. When ΔT=0, we arrive at the traditional HIYW case, where the 

neutral temperature is the received temperature. We will run the baseline case, with 10 HIYW 

populations. For each ΔT we will take the average energy consumption for the 10 HIYW 

populations. The OSFA case, the benchmark for comparison, will remain unchanged at a 

uniform 24°C throughout the building. We will observe three cities, two extreme climates and 

one mixed. Miami, FL (city #1) will represent the cooling dominated climates, Fairbanks, AK 

(city #15) will represent the heating dominated climates, and Baltimore, MD (city #7) will 
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represent the mixed climates. Figure 4.22 shows the relative energy cost of HIYW compared 

to OSFA for each of the three cities. 
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Figure 4.23 – Influence of deviation from neutral temperature on HIYW to OSFA energy 

usage ratio for Miami, Baltimore, and Fairbanks. 

 

As we can see in Figure 4.22 for a cooling dominated climate (Miami), increasing the 

occupants’ temperatures (ΔT>0) results in a net yearly savings over OSFA. Increasing 

occupants’ room temperature 1°C above the desired temperature, HIYW energy consumption 
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went from a 3% penalty to a 3% savings from OSFA. The higher set point temperatures 

results in a lower building cooling load which resulted in a lower yearly energy usage. In Miami, 

lowering the occupants’ temperatures (ΔT<0) however, increased the cooling load and 

consequently the yearly energy cost. The opposite is true in heating dominated climates. 

Lowering occupant temperatures resulted in a net yearly savings over OSFA due to the 

reduced heating load. For the mixed climate (Baltimore) there is no appreciable change 

regardless of the deviation. Here, when ΔT is positive the reduced cooling load in the summer 

is offset by an increased heating load in the winter, and vise versa when ΔT is negative. 

With these positive results it may be possible to use a more intelligence approach in deciding 

how to apply deviations to the occupants’ neutral temperature. As we saw before (Figure 4.1) 

the building power consumption is the lowest at approximately 13°C. For temperatures greater 

than 13°C the building is mostly cooled, whereas for temperatures below 13°C the building is 

mostly heated. During the cooling phase we will add ΔT to the neutral temperature and during 

the heating phase we will subtract ΔT. That is, 

 
if 13 C
if 13 C.

neutral out
set

neutral out

T T T
T

T T T
−Δ ≥ °⎧

= ⎨ + Δ < °⎩
 (4.2) 

We will again test the three ranges of climates, hot, cold, and mixed, for the baseline building 

model. Again we will use 10 random populations and average the yearly energy usage for each 

to arrive at a single HIYW yearly energy usage. Figure 4.24 shows the ratio of HIYW to OSFA 

energy usage for ΔT ranging from 0 (traditional HIYW) to 3°C.  
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Figure 4.24 – HIYW to OSFA energy ratio with heating (-ΔT) and cooling (+ΔT) 

temperature deviations 

 

Here we can see the strong effect ΔT has on the HIYW energy consumption. Starting at ΔT=0 

(traditional HIYW) HIYW uses more energy than OSFA. However, shifting occupants’ set 

point temperatures slightly depending on the season can quickly lower the energy cost. At a 

modest 2°C shift, HIYW uses approximately 7-9% less energy than OSFA. Figure 4.25 shows 

the increase associated with HIYW when a ΔT of 1°C is used for all the cities studied. We can 

see that for every city except San Francisco (city#6) that an energy savings is realized when we 

slightly lower the occupants’ desired temperatures by 1°C in the winter and raise the 

temperatures by 1°C in the summer.  
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Figure 4.25 – Ratio of yearly energy usage when ΔT=1°C 

 

These results show the motivation to apply intelligent control to the building system to try to 

optimize both comfort and energy efficiency. If small deviations are made within each 

occupants threshold it would be possible to lower the energy consumption without negatively 

affecting perceived thermal comfort. Ari et al [32], including the author of this study, have 

used advanced optimization techniques to further reduce energy consumption while 

maintaining occupant comfort. They have shown that through gradient optimization and fuzzy 

techniques that it is possible to improve comfort from the traditional OSFA, without 

increasing energy, or even reducing overall energy usage. Even San Francisco was shown that, 

by using an optimized HIYW solution, a 5% energy savings over OSFA could be realized [32]. 
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4.6 Solar Radiation 

One of the major assumptions of the TCTB model is that there are no solar heat gains. To 

explore the ramifications of neglecting the solar loads we will use TRNSYS and its radiation 

processors. As an input the radiation processor use the TMY2 data recorded for the total 

horizontal radiation and direct normal radiation. The TRNSYS radiation processors then 

calculate the appropriate heat gain based on the azimuth and the slope of each surface. We will 

orient our square building with each side facing N, S, E, or W. Each exterior wall, and 

consequently each exterior window, is treated as perfectly vertical and entirely un-shaded. The 

solar absorptivity of the wall is set to the TRNSYS recommended average value of 0.6 [22]. To 

try to capture the effect of the solar radiation will look only at the work day hours (6am-7pm) 

as these are the most likely to be during sunlight hours.  

First we will compare the baseline building model with and without solar radiation effects.  

Figure 4.26 shows the percentage increase in OSFA yearly energy when we add the effect of 

solar radiation. The influence of the solar load is clearly large, especially in the warmer, sunnier 

climates. It is interesting to note that in every climate the addition of solar radiation caused an 

increase in yearly energy usage. The solar load must increase the cooling load in the summer 

more than it helps the heating load in the winter. This fact leads us to wonder about the 

influence of the chosen window (Section 4.6.1).  
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Figure 4.26 – Percent increase in TRNSYS-calculated OSFA yearly energy usage associated 

with addition of solar radiation 

 

 It is interesting to note the effect of the solar radiation on HIYW yearly energy usage. As it 

did in OSFA, HIYW used considerably more energy over the course of a yearly simulation 

when solar radiation was added. However, the absolute increase in energy was nearly the same 

for HIYW. Figure 4.27 shows the comparative increase in yearly energy usage between OSFA 

and HIYW. It can be seen that the solar radiation gain has a significant impact on the building 

load but does not vary significantly depending on the interior temperatures.  
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Figure 4.27 – Increase in yearly energy consumption for OSFA and HIYW associated with 
the addition of solar radiation 

 

This observation is useful. Since the energy increase with the addition of solar gains is on 

average 3% different within each city, a single additive factor could be calculated for each city 

and added to a simulation that neglects solar.  

 

4.6.1 Solar Radiation without a Window 

As mentioned above we would like to understand the influence of the selected window in the 

TRNSYS model. We will remove the window and re-run TRNSYS for the baseline building 

without any exterior windows. The surface area of the outside walls remained the same, just 

comprised entirely of solid wall materials. All other building and solar characteristics are 
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unchanged from the previous simulations. Figure 4.28 shows the percent increase in yearly 

energy usage when solar radiation is added to a building without windows. 
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Figure 4.28 – Percent increase in yearly energy usage with the inclusion of solar radiation for 

baseline building without windows. 

 

Comparing Figure 4.26 and Figure 4.28, clearly the window was the main mechanism for the 

increased cooling load resulting from the solar radiation. The increase dropped an order of 

magnitude from an average increase of 29% to 2.9% without the windows. The beam radiation 

that entered directly through the windows appears to be the source of the increased cooling 

load, as opposed to the radiation absorbed by the building walls. In real buildings windows are 

often shaded either from the exterior or through internal shading devices in an attempt to 

reduce large gains from direct beam radiation. It would appear that neglecting solar radiation in 

these cases is a far less significant assumption than a building with no shading devices. The 

TCTB model is therefore better suited to calculate the building energy usage for buildings with 



Report No. DE-FG02-03ER63694-F1 

 

 

 

106

significant shading of the windows, either from blinds or other shading devices, or through 

exterior shading such as trees or other buildings. 
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5 Conclusions 

The lumped parameter, TCTB model, presented in this study provided us with an accurate and quick 

method to simulate yearly building energy usage. From the comparison with TRNSYS we were able 

to determine that, despite neglecting transient effects, for a yearly simulation the TCTB model 

predicted energy usage within approximately 0.6% of the transient TRNSYS solution (without 

solar radiation), while executing in one six-hundredth of the time. The effect of solar radiation 

was neglected, and proved to be a minor assumption (approximately 3% energy difference 

over a yearly simulation) when the direct beam radiation through the windows was removed. 

The TCTB model’s major advantage over the transient TRNSYS simulations is its significantly 

faster execution time. The TCTB model was able to run a yearly simulation for the two control 

strategies (HIYW and OSFA) for all 15 cities in approximately thirty seconds. Running the 

equivalent TRNSYS simulations would require 30 independent simulations each requiring 

between ten and fifteen minutes of computation time. This would make running large-scale 

optimization or parametric studies using a TRNSYS nearly impossible in a reasonable time 

frame. The lumped parameter approach was ideal for the exploration of energy costs in 

buildings equipped with distributed environmental control systems. 

The cost associated with the adoption of a HIYW approach to environmental control is 

dependent on a number of factors including: climate region, interior partition thermal 

resistance, building inhabitants preferences, and to a lesser extent building shape (excluding 

solar heat gain, which depends strong on building shape and orientation).  

At extreme temperatures, both hot and cold, the heat transfer associated with the small 

internal temperature deviations between offices in a building becomes insignificant compared 
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to the heat transfer with the outside ambient air. The opposite is true for mild outdoor 

temperatures. At these temperatures the building energy usage is lowest. Internal heat transfer 

between offices at different temperatures becomes more significant and has an appreciable 

effect on building energy use. This is further impacted by the presence of an economizer. In 

the HIYW case, the economizer is unable to meet the cooling load of the building at outdoor 

temperatures at which it can in the OSFA case.  

The climate in which a building is located is a major factor in the cost associated with HIYW compared to 

OSFA. Cities, and their corresponding climate zones, with a significant portion of the year 

having extreme temperatures (Miami, Phoenix, Fairbanks, etc.) show the lowest increase in 

yearly energy usage when switching to HIYW control (between 2-6%). It is in these cities that 

adoption of personal environmental control systems, without optimization, appears to be the 

best choice. Cities with a moderate climate, such as San Francisco, show the largest increase in 

yearly energy usage, ranging from 10-20% and would be the least practical to implement 

personal control. The majority of the US population lives in climates that fall between these 

two extremes and would likely see a 5-10% increase with the adoption of personal control.  

The thermal resistance of the interior partition of a building also greatly affects the energy cost associated 

with HIYW. Thermal resistances ranging from partial height cubicles to full office walls, appear 

to provide sufficient resistance to internal heat transfer to keep building energy usage within 

reasonable limits. However, open workspaces, where there are no physical boundaries between 

personal zones, may create significant internal heat transfer that translates to increased energy 

costs. However, the well-mixed model assumption is a poor representation of the physical 

problem and more research must be done to determine true energy transfer characteristics of 

such open office spaces.  
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The impact of the randomness of the personal preferences of building occupants varies depending on the 

climatic location of the building. In most cities the random populations fell within approximately 

3-10% increase for common interior walls and a 4-15% increase for partial height partitions. 

For a building in San Francisco, or a comparable climate, the impact of the building occupants’ 

desired temperatures was significantly larger. The HIYW energy usage premium ranged from 

10-35% for common interior walls and 23-78% for partial height partitions depending on the 

specific occupants within the building. Regardless of building occupants, in every case, except 

two populations, HIYW used more energy over the course of a year than OSFA. The only two 

instances where HIYW saved energy were in extreme climates (Miami and Fairbanks) for an 

unusually fortunate arrangement of building inhabitants. In both these cases the yearly savings 

was less than 1%. For all other arrangements and in every other city HIYW resulted in an 

increase in energy usage, in some cases as high as 78% more than OSFA.  

Building shape appears to have a very small influence on the relative cost between HIYW and OSFA. 

Most office buildings tend to be rectangular with at least some core offices or cubicles. Small 

changes in the aspect ratio of the building have a negligible effect on HIYW costs. Even 

drastic changes, such as a corridor of only exterior offices, actually slightly lowered the energy 

penalty related to the adoption HIYW.  

Allowing building occupants’ to receive slightly different temperatures than their desired perfect temperature, 

energy savings can be realized. No longer will a personalized approach to environmental control 

result in increased yearly energy costs. A small 1°C deviation from the occupants’ neutral 

temperature can help create an energy savings from OSFA in nearly every city, while still 

catering to the occupants’ desires. This promising result has been explored in other studies by 

the author and others. It was shown that using advanced optimization techniques to 
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intelligently deviate occupants’ temperature set points, optimized HIYW can result in an 

energy savings and a better overall thermal satisfaction than OSFA.  

The increase in building energy usage is small compared to potential productivity gains. The increase in 

energy associated with HIYW compared to OSFA in the worst case scenario was 

approximately 78%. This corresponded to the worst of 100 populations in a partial height 

partitioned building in San Francisco. If we assume entire building utility cost is comprised of 

HVAC energy, based on the average commercial building costs, a business would only need to 

realize a 0.7% increase in productivity to effectively counteract the increased cost. In most 

cases, however, the increase in yearly energy usage was closer to 8-10%. To pay for the 

increase in energy cost, an average business would need only to increase productivity by less 

than 0.1%. With this in mind, the potential productivity benefits far outweigh the small 

increase in overall business operating costs that would result from the implementation of 

distributed environmental control systems. 

The TCTB model can be improved in the future to include even more physics, especially solar 

radiation and humidity effects. The temperature bin approach could be expanded to some 

form of three dimensional weather bins to include humidity as well as dry bulb temperature. 

The effect of solar radiation on building energy use is large when windows are involved and 

would be beneficial to include in the TCTB model, either directly or through some correlation 

with the outdoor temperature. If it is possible to correlate the solar gain on a vertical surface 

with different azimuths, a correction factor could be added to the dry bulb temperature. A new 

effective temperature could then be used for the outer surfaces and windows. Shading factors 

could then be calculated and a better approximation for windows exposed to solar gains could 

be made. More work must to be done in an effort to understand and quantify the energy flux 
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between partial height partitions. Field testing and experimental office settings may provide 

some of the answers and help to further validate the computed results. 



Report No. DE-FG02-03ER63694-F1 

 

 

 

112

6 Appendix 

6.1 Temperature Bin Data 

Table 6.1 shows the complete temperature bin data extracted from the TMY2 files for the full 

year (8760 hours). The bins are 3°C intervals with centers as shown.  
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Table 6.1 – Yearly temperature bin data for 15 representative U.S. cities (number of hours per year) 

 Temperature Bin Center (°C) 

City 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 1 -2 -5 -8 -11 -14 -17 -20 -23 -26 -29 -32 -35 -38 -41 -44 -47

Miami, FL      9 715 2032 2926 1766 665 320 220 81 18 8                  

Houston, TX     3 250 608 1050 1622 1500 989 641 593 473 396 312 213 76 25 8 1             

Phoenix, AZ  14 102 297 494 644 808 959 866 780 815 808 845 657 421 194 48 8                

Memphis, TN     3 225 492 741 1115 1073 870 801 696 717 679 516 384 308 98 33 9             

El Paso, TX    3 117 389 552 718 1014 1008 884 766 859 758 627 504 325 173 54 9              

San Francisco, CA      6 14 29 72 331 848 1436 2892 2144 769 184 35                 

Baltimore, MD     1 97 202 430 689 993 910 744 705 615 788 857 804 421 267 150 69 17 1           

Albuquerque, NM     11 117 308 536 624 812 917 811 763 752 763 723 729 564 252 69 9             

Salem, OR      34 76 168 266 423 594 938 1312 1449 1505 1129 578 205 65 18              

Chicago, IL      34 141 302 638 756 829 680 635 649 683 722 881 712 459 309 138 81 59 42 10         

Boise, ID    2 36 124 221 299 391 513 654 640 813 948 895 969 1069 608 272 168 71 63 4           

Burlington, VT     4 14 40 185 360 658 832 746 786 725 615 655 733 548 535 468 350 195 146 107 52 6        
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Helena, MT     1 44 100 198 276 404 558 757 793 814 868 949 910 647 458 302 147 122 157 99 89 56 11       

Duluth, MN       13 82 203 330 513 630 777 874 734 646 663 746 544 473 417 332 248 215 144 112 58 6      

Fairbanks, AK       2 19 112 207 422 517 724 739 657 562 441 432 316 344 555 447 471 391 380 274 221 139 104 163 70 50 1 
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6.2 Thermodynamic Properties 

The pertinent properties of air are a weak function of temperature so it was decided to assume 

them to be constant throughout all calculations. The values used in both the TCTB and 

TRNSYS model are listed below in Table 6.2. 

 

Table 6.2 – Thermodynamic properties of air used in simulations 

Property Value 

Density of air 1.204 kg/m3 

Specific heat of air 1012 J/kgK 

 

 

6.3 HIYW Temperatures 

Figure 6.1 shows the frequently used HIYW distribution of neutral temperatures. Both the 

numerical values and the location were chosen at random. The temperature values come from 

the population distribution described in Section 2.9.1. Table 6.3 lists the numerical value of the 

set points of the same distribution within the building. 
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Figure 6.1 – HIYW neutral temperature (thermostat set point) random room assignment 

distribution within building 

 

Table 6.3 – HIYW neutral temperatures (thermostat set points) by assigned room (in °C) 

22.63 22.68 23.24 21.46 25.47 24.80 24.07

23.75 24.10 21.21 23.23 23.17 23.91 22.67

25.43 21.60 22.52 23.15 24.01 25.07 24.58

22.66 23.41 25.27 22.78 23.06 26.77 23.99

24.76 24.55 23.86 23.78 24.70 24.63 23.67

23.28 23.62 24.46 25.83 23.70 23.99 25.53

24.66 25.48 25.13 23.95 24.58 25.10 26.24
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6.4 TCTB MATLAB code 

Listed here is the TCTB model, written in MATLAB. The main loop contains four 

subroutines: Rcalc.m, Lcalc.m, COPcalcCity.m, CYCdegcalc.m. Each subroutine is listed under 

a separate heading. 

 

6.4.1 Main loop 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Building Energy TCTB Model – Main Code 

%    

%   Version 9.515 

%   last revision: 

%      5/17/2005 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Subroutines:  Rcalc.m Lcalc.m CYCDEGcalcCity.m COPcalcCity.m 

%  yearlyEnergy.m 

%  Files:  Seckindist.mat binhours.mat binhoursWORK.mat 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

clear; 

n=7;    %set # of horizontal rooms 

m=7;     %set # of vertical rooms 

 

cityset=6; %city # to display energy graph at end 

 

bintype=1; %set =1 for 8760 hours/year, or =2 for 7am-7pm hours (4745) 

 

if bintype==1 

    load binhours; 

elseif bintype==2 

    load binhoursWORK; 
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    binhours=binhoursWORK; 

else 

    disp('Error with bintype, using 4745 hours') 

    load binhoursWORK; 

end 

 

 

% controltype=input('Thermostat control 1: 3TFA, 2: Single Thermo 3: TTFA  :') 

%uncomment if other than 3TFA is desired 

controltype=1; 

if controltype==1 %set thermo control rooms for 3TFA in subroutine Lcalc 

elseif controltype==2 

    X=25; 

else  

    X=25; 

    X2=1; 

end 

 

ci=clock; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 

%load constants, resistances, and ventilation 

Rcalc;  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%initialize heating and cooling power vectors 

PowerCOOL=zeros(1,67); 

PowerHEAT=zeros(1,67); 

 

 

%%%%%%%%%%   main loop   %%%%%%%%%%%%%%%%%%%%% 

%counter = 1 for conventional 

%counter = 2 for HIYW 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for counter=1:2 

    if counter==1 

        T=24*ones(1,n*m);  %uniform 24C setpoints 

    elseif counter==2 



Report No. DE-FG02-03ER63694-F1 

 

 

 

119

        % specify desired temperatures for HIYW 

        if n*m==49    

            load SeckinDist.mat T   %load predetermined distribution 

        else 

            T=1.2*randn(1,n*m)+24;  

        end 

    end 

     

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % claculate L matrix - thermostat control scheme 

    Lcalc; 

    %%%%%%%%%%%%%%%%%%%%%%%%%% 

     

   

    %Formulation of matrix equation A=B*T 

     

    A=zeros(n*m,n*m); 

       

    for i=1:n*m 

        for j=1:n*m 

            if i==j 

                for k=1:n*m 

                    A(i,j)=A(i,j)-U(i,k)-L(i,k)*U(k,i)*mc(i)/mc(k); 

                end 

            else 

                 

                for k=1:n*m 

                    A(i,j)=A(i,j)-L(i,k)*U(k,j)*mc(i)/mc(k); 

                end 

            end 

            if i==j 

                A(i,j)=A(i,j)-mc(i)-Uout(i); 

            else 

                A(i,j)=A(i,j)+U(i,j); 

            end 
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        end 

    end 

     

    COPbin=0; 

    PLCOP=0; 

     

    %Set thermostat setpoints  

    Tstar=T; 

    

  %%%City loop for 15 DOE cities 

    %See list for corresponding numbers/cities 

     

    for citynum=1:15 

         

      %%%weather bin loop 

         

        for bin=1:length(W) 

             

            Tout=W(bin); 

            

            %Set up B matrix 

             

            B=zeros(n*m,1); 

             

            for i=1:n*m 

                for k=1:n*m 

                    f=0; 

                    for j=1:n*m 

                        f=f+U(k,j); 

                    end 

                    B(i)=B(i)-mc(i)*L(i,k)*(Uout(k)*(Tstar(k)-Tout)/mc(k)... 

                        +f*Tstar(k)/mc(k)+-G(i)/mc(k)+Tstar(k)); 

                end 

                B(i)=B(i)-(Uout(i))*Tout-G(i); 

            end 

             

            %%%%%%  
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            Tnew=A\B; 

            %%%%%%                 

            %% Tnew is vector of new zonal temperatures 

             

            % Solve for necessary supply temperatures vector Ts 

             

            Ts=zeros(n*m,1); 

            for k=1:n*m 

                for j=1:n*m 

                    Ts(k)=Ts(k)+(1/mc(k))*U(k,j)*(Tstar(k)-Tnew(j)); 

                end 

                Ts(k)=Ts(k)+(1/mc(k))*Uout(k)*(Tstar(k)-Tout)-G(k)/mc(k)+Tstar(k); 

            end 

             

            %Now solve for energy supplied to each zone Qo 

             

            Qo=zeros(n*m,1); 

            for i=1:n*m 

                for k=1:n*m 

                    Qo(i)=Qo(i)+mc(i)*L(i,k)*(Ts(k)-Tnew(i)); 

                end 

            end 

             

            %Building load (i.e. NO equipment, heat = cool) 

            %for debugging and TRNSYS comparisons only 

            qbuilding2(bin)=sum(abs(Qo(1:n*m))); 

             

         

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        

            %%%%%%%%%%begin Energy Calculation%%%%%%%        

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            TbuildAVG=mean(mean(Tnew)); %for COP calculations 

            COP=9e10; %initialize in case of economizer zone 

            %%%FURNACE EFFICIENCY%%%% +conversion to electricity (1 gas= 2.78 elect) 

            eff=(.85*2.78); 

             

            if and(controltype==2, counter==1) %OTFA 
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                if Qo(X)<0 %denotes cooling 

                    %%ECONOMIZER%% 

                    if Tout<=Ts(X) %Qo(X)>economizercapacity(bin) 

                        QcoolCOP(bin)=0; 

                        econoOFF=0; 

                        %%ECONOMIZER end %%     

                    else 

                        econoOFF=1; 

                        COPcalcCity; %call subroutine COPcalcCity to find COP 

                    end 

                    COPbin(bin)=COP; 

                    QcoolCOP(bin)=0; 

                    Qheat=zeros(1,length(W)); 

                    for i=1:n*m 

                        if Qo(i)<0 

                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 

                        end 

                    end 

                    %%%%%%Cyclic Degredation Factor Caclulation%%%%%%%%%%% 

                    CYCDEGcalcCity 

                    %%%%%%end Cyclic Degredation Factor%%%%%%%%%%%%%%%%%%% 

                    if overcap==1 

                        PowerCOOL(bin)=econoOFF*Capacity*(-1000)/PLCOP(bin); 

                    else 

                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 

                    end   

                     

                else %denotes heating              

                    for i=1:n*m 

                        if Qo(i)>0 

                            Qheat(bin)=Qheat(bin)+Qo(i); 

                        end 

                    end 

                    PowerHEAT(bin)=Qheat(bin)/eff;                

                end %end OTFA energy Calculation        
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            elseif and(controltype==3, counter==1) %TTFA 

                 

                if min(Qo(X),Qo(X2))<0 %denotes cooling 

                    %%ECONOMIZER%% 

                    if Tout<=min(Ts(X),Ts(X2)) %Qo(X)>economizercapacity(bin) 

                        QcoolCOP(bin)=0; 

                        econoOFF=0; 

                        %%ECONOMIZER end %%    

                    else 

                        econoOFF=1; 

                        COPcalcCity; %call subroutine COPcalcCity to find COP 

                    end 

                    COPbin(bin)=COP; 

                    QcoolCOP(bin)=0; 

                    Qheat=zeros(1,length(W)); 

                    for i=1:n*m 

                        if Qo(i)<0 

                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 

                        end 

                    end 

                    %%%%%%Cyclic Degredation Factor Caclulation%%%%%%%%%%% 

                    CYCDEGcalcCity 

                    %%%%%%end Cyclic Degredation Factor%%%%%%%%%%%%%%%%%%% 

                    if overcap==1  %should not happen 

                        PowerCOOL(bin)=econoOFF*Capacity*(-1000)/PLCOP(bin); 

                    else 

                        %cooling power calculation 

                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 

                    end   

                     

                end %end Cooling loop 

                 

                if max(Qo(X),Qo(X2))>0 %denotes heating 

                    for i=1:n*m 

                        if Qo(i)>0 

                            Qheat(bin)=Qheat(bin)+Qo(i); 

                        end 
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                    end 

                end 

                %heating power calculation 

                PowerHEAT(bin)=Qheat(bin)/eff; 

                 

     %%%%%%%%%%%%% 

            elseif and(controltype==1, counter==1) %3TFA 

                 

                if min([Qo(1),Qo(2),Qo(25)])<0 %denotes cooling 

                    %%ECONOMIZER%% 

                    if Tout<=min([Ts(1),Ts(2),Ts(25)]) %Qo(X)>economizercapacity(bin) 

                        QcoolCOP(bin)=0; 

                        econoOFF=0; 

                        %%ECONOMIZER end %%              

                    else 

                        econoOFF=1; 

                        COPcalcCity; %call subroutine COPcalcCity to find COP 

                    end 

                    COPbin(bin)=COP; 

                    QcoolCOP(bin)=0; 

                    Qheat=zeros(1,length(W)); 

                    for i=1:n*m 

                        if Qo(i)<0 

                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 

                        end 

                    end 

                     

                    %%%%%%Cyclic Degredation Factor Caclulation%%%%%%%%%%% 

                    CYCDEGcalcCity 

                    %%%%%%end Cyclic Degredation Factor%%%%%%%%%%%%%%%%%%%                 

                    if overcap==1 %will only happen if something has been changed 

                        error('capacity insufficient 3TFA') 

                    else 

                        %cooling power calculation 

                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 

                    end                       
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                end %end Cooling loop 

                 

                if max([Qo(1),Qo(2),Qo(25)])>0 %denotes heating 

                    for i=1:n*m 

                        if Qo(i)>0 

                            Qheat(bin)=Qheat(bin)+Qo(i); 

                        end 

                    end 

                end 

                %heating power calculation 

                PowerHEAT(bin)=Qheat(bin)/eff; 

                 

                 

       %%%%%%%%%%%%%%%%%%% 

                 

                 

            elseif counter==2 %HIYW 

                if min(Qo)<0 %denotes cooling 

                    %%ECONOMIZER%% 

                    if Tout<=min(Ts) %Qo(X)>economizercapacity(bin) 

                        QcoolCOP(bin)=0; 

                        econoOFF=0; 

                        %%ECONOMIZER end %%              

                    else 

                        coldpeople(citynum,bin)=0; 

                        for i=1:n*m 

                            if Tout>=Ts(i) 

                                coldpeople(citynum,bin)=coldpeople(citynum,bin)+1; 

                            end 

                        end 

                        econoOFF=1; 

                        COPcalcCity; %call subroutine COPcalcCity to find COP 

                    end 

                    COPbin(bin)=COP; 

                    QcoolCOP(bin)=0; 

                    Qheat=zeros(1,length(W)); 

                    for i=1:n*m 
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                        if Qo(i)<0 

                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 

                        end 

                    end 

                    %%%%%%Cyclic Degredation Factor Caclulation%%%%%%%%%%% 

                    CYCDEGcalcCity 

                    %%%%%%end Cyclic Degredation Factor%%%%%%%%%%%%%%%%%%% 

                    if overcap==1 %should not happen 

                        error('capacity insufficient HIYW') 

                    else 

                        %cooling power calculation 

                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 

                    end   

                     

                end %end Cooling loop 

                 

                if max(Qo)>0 %denotes heating 

                    for i=1:n*m 

                        if Qo(i)>0 

                            Qheat(bin)=Qheat(bin)+Qo(i); 

                        end 

                    end 

                end 

                %heating power calculation 

                PowerHEAT(bin)=Qheat(bin)/eff;             

            end %control type energy loop 

                

             

            %%%%%%%%%%%%%%%%%%%%%% 

            %%%%% 

            BuildingPower(bin)=PowerHEAT(bin)-PowerCOOL(bin)+PowerFAN; 

            %%%%% 

            %%%%%%%%%%%%%%%%%%%%%%% 

            %total building power sum of heat+cool+fan 

               

            %bookkeeping  

            if counter==1 
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                TTFAtemps(:,bin,citynum)=Tnew; 

            elseif counter==2 

                HIYWtemps(:,bin,citynum)=Tnew; 

            end 

             

            if W(bin)==19 

                Qoquilt(:,counter)=Qo; 

            end 

             

             

             

        end %bin loop 

               

        %more bookkeeping 

        if counter==1 

            TTFApower(citynum,:)=BuildingPower; 

            TTFAcooling(citynum,:)=PowerCOOL; 

        elseif counter==2 

            HIYWpower(citynum,:)=BuildingPower; 

            HIYWcooling(citynum,:)=PowerCOOL; 

        end 

         

        %for graph at end of code 

        if citynum==cityset 

            Q2(1:length(W),1)=W'; 

            Q2(1:length(W),counter+1)=BuildingPower'; 

            Q(1:length(W),1)=W'; 

            Q(1:length(W),counter+1)=qbuilding2'; 

            plotlim=find(binhours(citynum,:)>0); 

            minplot=min(plotlim); 

            maxplot=max(plotlim); 

        end 

         

    end %end city loop 

     

end %counter loop 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Post processing and debugging 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cf=clock; 

tottime=cf-ci %displays total execution run time 

 

 

%Plots of (1) building load 

% (2) bin power consumption for cityset 

 

if controltype==1 

    leg='3TFA'; 

elseif controltype==2 

    leg='OTFA'; 

elseif controltype==3 

    leg='TTFA'; 

end 

plottitle2=['3TFA Baseline Case']; 

 

%%%plot of building load power (1) and  

%%%  HVAC power usage 

 

figure(1) 

plot(Q(:,1),Q(:,2)/1000,'-',Q(:,1),Q(:,3)/1000) 

grid on 

xlabel('Bin Temp (C)') 

ylabel('Building Load Power Usage (kW)') 

legend(leg,'HIYW') 

title(plottitle2) 

figure(2) 

plot(Q2(minplot:maxplot,1),Q2(minplot:maxplot,2)/1000,... 

    '-',Q2(minplot:maxplot,1),Q2(minplot:maxplot,3)/1000) 

grid on 

xlabel('Bin Temp (C)') 

ylabel('Power Usage (kW)') 
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legend(leg,'HIYW') 

title([plottitle2 ' City #' num2str(cityset)]) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% final energy calculation 

% integrated over bin for yearly 

 

YearlyTTFA=zeros(15,1); % initialize vectors 

YearlyHIYW=zeros(15,1); 

 

%%%% 

%integrate yearly energy: binhours*power 

%%%% 

for city=1:citynum 

    for bin=1:length(W) 

        YearlyTTFA(city)=YearlyTTFA(city)+binhours(city,bin)*TTFApower(city,bin); 

        YearlyHIYW(city)=YearlyHIYW(city)+binhours(city,bin)*HIYWpower(city,bin); 

    end 

end 

 

 

%determine appropriate graph axes limits 

 

yupper=round(max(YearlyHIYW./YearlyTTFA)*10+1)/10; 

if min(YearlyHIYW./YearlyTTFA)<1 

    ylower=round(min(YearlyHIYW./YearlyTTFA)*10-1)/10; 

else 

    ylower=1; 

end 

 

%Final comparison plot 

figure(3) 

bar(YearlyHIYW./YearlyTTFA) 

ylim([ylower yupper]) 

title(['Normalized Energy Usage for ' num2str(n) 'x' num2str(m) ' Building in Various US Cities']) 

xlabel('City #') 
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ylabel('Normalized Energy Usage (HIYW/3TFA)') 

 

 

%-------------------------------------------------------------------------------------------------------------------------------- 
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6.4.2 Resistance Subroutine (Rcalc.m) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Rcalc.m subroutine 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%initialize error vectors (used for COP/cyc over capacity errors) 

errcount=0; 

capacityover=0; 

 

Qint=260; %int heat gain (W) 

 

%set internal heat generation 

G=Qint*ones(n*m,1); 

 

%HVAC fan power 

PowerFAN=1438; %W 

 

% Set Temperature bin vector W % 

maxtemp=46; 

mintemp=-47; 

step=3; 

W=maxtemp:-step:mintemp; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

 

Vol=3.5*3.5*3; %[m^3] vol of room 

ACH=5;         %[1/h] Air changes per hour for each room 

airdensity=1.204; %[kg/m^3] 

specheat=1012;    %[J/kgK] of air 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Ventilation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i=1:n*m  %create vector mc (mdot*c) 
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    mc(i)=specheat*Vol*airdensity*ACH/3600;  %[J/sK]  

end 

 

%fresh air ventilation 

for i=1:n*m 

    ventout(i)=specheat*airdensity*.009439; %[J/sK]  .009439 m^3/s = 20cfm 

end 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%               U matrix Creation 

%         (note for n x n building ONLY) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

U=zeros(n*m,n*m);   %initialize resistance matrix 

 

Area=3.5*3; %[m^2] area of each wall between rooms  

Awind=5; %[m^2] area of window on exterior wall  

Awall=Area-Awind; %[m^2] exterior wall without window 

 

Routwall=2.47;%[m^2K/W]  

Rinwall=0.392; %[m^2K/W] 

Routwindow=.353; %[m^2K/W]  (for TRNSYS: 1/7.045) 

 

hin=3.06; %[W/m^2K]     (11/3.6=3.06 TRNSYS) (8.29 ASHRAE) 

hout=17.78; %[W/m^2K]   (64/3.6=17.78 TRNSYS) (22.7 AHSRAE) 

 

Uewall=1/(Routwall+1/hout+1/hin); %[W/m^2K] 

Uewind=1/(Routwindow+1/hout + 1/hin); %[W/m^2K] 

 

UAin=Area/(2/hin+Rinwall);   %[W/K]    

UAext=Uewall*Awall+Uewind*Awind; %[W/k]  

 

Uin=UAin;   %INVERSE of interior resistance * Wall Area 

Uext=UAext; %INVERSE of exterior resistance * Wall Area 
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%%%%%% 

% Conductance Matrix U formulation 

%%%%%% 

 

 

for i=1:n*m; 

    for j=1:n*m; 

         

        if j==i+n;      %down 

            U(i,j)=Uin; 

            if (n*m-i)<n;   %bottom row exclusion 

                U(i,j)=0; 

            end 

             

        elseif j==i+1;  %right 

            U(i,j)=Uin; 

            for d=n:n:(n*m) %right row exclusion 

                if i==d 

                    U(i,j)=0; 

                end 

            end 

             

        elseif j==i-n   %up 

            if i>n;         %top row exclusion 

                U(i,j)=Uin; 

            end 

             

        elseif j==i-1   %left 

            U(i,j)=Uin; 

            for d=1:n:n*m-(n-1); %left row exclusion 

                if i==d 

                    U(i,j)=0; 

                end 

            end     

            

        end  %if loop 
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    end   %j loop 

end      %i loop 

 

%%%%%%% 

% Uout=conductance vector with outside 

%%%%%%% 

 

Uout=zeros(n*m,1); 

%top 

for i=1:n 

    Uout(i)=Uout(i)+Uext; 

end 

%right 

for i=n:n:n*m 

    Uout(i)=Uout(i)+Uext; 

end 

%left 

for i=1:n:n*m-(n-1); 

    Uout(i)=Uout(i)+Uext; 

end 

%bottom 

for i=n*m-(n-1):n*m 

    Uout(i)=Uout(i)+Uext; 

end 

 

%roof 

for i=1:n*m 

    Uout(i)=Uout(i)+3.5*3.5*(1/Routwall); 

end 

 

 

 

Uout=Uout+ventout'; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%           End of U matrix creation 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%---------------------------------------------------------------------------------------------------------------------------------- 
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6.4.3 Thermostat Control Subroutine (Lcalc.m) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Lcalc.m subroutine 

% 

%       L matrix 

% L matrix defines thermostat control 

% L(1:n*n,x) for all offices controlled by office x 

% L(x,x) only office x controlled by office x 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

L=zeros(n*m,n*m); 

 

if counter==1  %conventional 

    if controltype==1; %3TFA 

         

        L(1:n*m,25)=1; 

         

        for i=1:n 

            if i==1 

                L(i,1)=1; 

                L(i,25)=0; 

            elseif i==n 

                L(i,1)=1; 

                L(i,25)=0; 

            else 

                L(i,2)=1; 

                L(i,25)=0; 

            end 

        end 

        %right 

        for i=2*n:n:n*m-n 

            if i==n 

                L(i,1)=1; 

                L(i,25)=0; 

            else 

                L(i,2)=1; 
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                L(i,25)=0; 

            end 

        end 

        %left 

        for i=n+1:n:n*m-(n-1); 

            if i==n*m-(n-1) 

                L(i,1)=1; 

                L(i,25)=0; 

            else 

                L(i,2)=1; 

                L(i,25)=0; 

            end 

        end 

        %bottom 

        for i=n*m-(n-1)+1:n*m 

            if i==m*n 

                L(i,1)=1; 

                L(i,25)=0; 

            else 

                L(i,2)=1; 

                L(i,25)=0; 

            end 

        end 

         

    elseif controltype==2;  %1TFA 

        L(1:n*m,X)=1; 

    elseif controltype==3;  %2TFA 

         

        L(1:n*m,X)=1; 

         

        for i=1:n 

            L(i,X2)=1; 

            L(i,X)=0; 

        end 

        %right 

        for i=n:n:n*m 

            L(i,X2)=1; 
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            L(i,X)=0; 

        end 

        %left 

        for i=1:n:n*m-(n-1); 

            L(i,X2)=1; 

            L(i,X)=0; 

        end 

        %bottom 

        for i=n*m-(n-1):n*m 

            L(i,X2)=1; 

            L(i,X)=0; 

        end 

         

         

    end 

     

elseif counter==2 %HIYW 

    for i=1:n*m 

        L(i,i)=1; 

    end 

end 

%------------------------------------------------------------------------------------------------------------------------------ 
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6.4.4 COP Calculation Subroutine (COPcalcCity.m) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   COPcalcCity.m 

% 

%       Subroutine for calculating COP for given outdoor 

%       and indoor conditions 

% 

%       Based on 10 ton Carrier rooftop heat pump 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

if Tout>40 

    %extrapolate 

    COP= 0.0468*TbuildAVG + 1.7636; 

elseif Tout>=13 

    %interpolation table 

    COPP=[5.41 5.23 4.97 4.76 4.52 4.29 

         5.17 4.98 4.74 4.53 4.30 4.08 

         4.92 4.74 4.51 4.30 4.09 3.87 

         4.67 4.50 4.27 4.08 3.87 3.66 

         4.43  4.25 4.04 3.85 3.65 3.45 

         4.18 4.01 3.81 3.63 3.43 3.24 

         3.93 3.77 3.58 3.40 3.21 3.03 

         3.69 3.52 3.35 3.17 3.00 2.82 

         3.44 3.28 3.11 2.95 2.78 2.61 

         3.19 3.04 2.88 2.72 2.56 2.40]; 

     

    intemp=[30.56 27.22 23.89 20.5 17 13.5]; 

    outtemp=[13 16 19 22 25 28 31 34 37 40]; 

     

    COP = interp2(intemp,outtemp,COPP,TbuildAVG,Tout); 

     

else 

    %extrapolate low end - likely an error 
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    COP=0.0667*TbuildAVG + 3.3887; 

    ['error in COP  ' 'Tout=' num2str(Tout)] 

end      

%--------------------------------------------------------------------------------------------------------------------------- 
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6.4.5 Cyclic Degradation COP calculation (CYCDEGcalc.m) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   CYCDEGcalc.m 

% 

%    Cyclic Degredation Factor Caclulation 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Cd=0.20;  %cyclic degradation coefficient [.25 for theoretical, .10-.20 for modern heat pump systems] 

 

%10-ton HP capacity ratings table (intemp horizontal axis, outtemp vertical axis)  

%for interpolation 

CAP=[42.37 40.04 40.04 38.47 37.25 36.02 

    41.62 39.25 39.25 37.65 36.40 35.16 

    40.87 38.46 38.46 36.83 35.57 34.30 

    40.12 37.67 37.67 36.01 34.73 33.44 

    39.37 36.88 36.88 35.20 33.89 32.58 

    38.62 36.09 36.09 34.38 33.05 31.71 

    37.87 35.30 35.30 33.56 32.21 30.85 

    37.12 34.51 34.51 32.74 31.37 29.99 

    36.37 33.71 33.71 31.92 30.53 29.13 

    35.62 32.92 32.92 31.10 29.68 28.27]; 

 

 

intemp=[30.56 27.22 23.89 20.5 17 13.5]; 

outtemp=[13 16 19 22 25 28 31 34 37 40]; 

 

%for extrapolation 

if Tout>40 

    Capacity=0.4047*TbuildAVG + 22.805; 

elseif Tout>=13 

    Capacity=interp2(intemp,outtemp,CAP,TbuildAVG,Tout); 

elseif econoOFF==1 

    if binhours(citynum,bin)==0 

    else 

        errcount=errcount+1; 



Report No. DE-FG02-03ER63694-F1 

 

 

 

142

        error(errcount,1)={['Capacity  ' 'Tout=' num2str(Tout) ' city=' num2str(citynum) ]}; 

    end 

    Capacity=0.3496*TbuildAVG + 31.302; 

elseif econoOFF==0 

    Capacity=100000; %to prevent error if first bin is economizer bin 

end        

 

if Qint~=260  %error if internal heat gain is changed 

    error('Capacity needs to be re-calculated') 

end 

 

% capacity scaling for 15 cities 

% capacity for Qint=260W and Tdist of mean=24C and stdev=1.2 

capfactorTTFA=[0.70466 0.82442 1.1786 0.82442 0.94971 0.73013 0.82442 0.82442 0.74396... 

        0.74396 0.94971 0.82442 0.82442 0.59049 0.59049]; 

capfactorHIYW=[0.72068 0.84082 1.1956 0.84082 0.9665 0.74623 0.84082 0.84082 0.7601... 

        0.7601 0.9665 0.84082 0.84082 0.62620 0.60620]; 

 

 

if counter==1  

    CityCapacity=Capacity*capfactorTTFA(citynum); 

elseif counter==2 

    CityCapacity=Capacity*capfactorHIYW(citynum); 

end 

 

%Find PLR (partial load ratio) 

PLR=QcoolCOP(bin)/(-CityCapacity*1000); 

 

PLCOP(bin)=COP*(1-Cd*(1-PLR)); 

if PLCOP(bin)>COP+.0001 

    PLCOP(bin)=COP; 

    overcap=0; 

    if binhours(citynum,bin)==0 

    else 

        %error reporting mostly for debugging 

        errcount=errcount+1; 

        error(errcount,1)={['Flag Capacity  ' 'Tout=' num2str(Tout) ' city=' num2str(citynum) ' counter='     
            num2str(counter)]}; 
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        capacityover(citynum,bin)=binhours(citynum,bin); 

        overcap=1; 

    end 

else 

    overcap=0; 

end 

%-------------------------------------------------------------------------------------------------------------------------- 
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1 Introduction  

Buildings utilize one-third of energy consumed in the U.S., and 40-60% of the overall energy 

consumption in buildings can be attributed to typical heating, ventilating, and air-conditioning 

(HVAC) systems for maintaining thermal comfort [1].  Before the oil crisis of 1973, HVAC 

systems were designed to provide quality occupant comfort without considering energy saving.  

Following the energy crisis, building designs targeted to lower energy usage by focusing on 

building thermal insulation, air-tightness of the building envelopes, and heat recovery while 

keeping building temperatures within acceptable levels [2].  This design strategy, when taken to 

extremes without proper monitoring, resulted in reduced comfort and unhealthy indoor air 

quality (IAQ).  The quality of the indoor environment is critically important to human health 

and performance.  In today’s technologically developed societies, a large proportion of the 

population (more than 95%) spend more than 90% of their time in built structures with 

artificially maintained environments (buildings, vehicles, etc.) [3][4].   

American Society of Heating Refrigeration and Air-conditioning Engineers 

(ASHRAE) and the International Organization for Standardization (ISO) have established and 

have been maintaining the standards for human thermal comfort. Specifically, the  ASHRAE 

Standard 55-2004 [5] “Thermal Environmental Conditions for Human Occupancy,” and ISO 

Standard 7730 [6], specify the criteria for providing acceptable thermal conditions to a majority 

of the occupants wherever man-made climates are provided for human occupancy based on a 

combination of personal factors (thermal resistance of the clothing and activity level) and 

environmental factors (air temperature, mean radiant temperature, relative air velocity, and 

relative humidity).  These standards assume that a building’s occupants are subjected to the 

same environmental conditions. However, because of the differences in individual occupants’ 
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preferences, it is impossible to satisfy everyone at the same time.  Therefore standards 

inherently are based on an average population comfort.  The current conventional “one-size-

fits-all” HVAC systems are usually designed by these thermal comfort standards so as to 

provide acceptable thermal comfort for a group of people.  The thermal conditions are 

considered acceptable when at least 80% of a building’s occupants are satisfied.   

ASHRAE Standard 55-2004 specifies a comfort zone of temperatures to be applied uniformly 

throughout a building that is regulated by the small number of thermostats.  The characteristic 

differences between zones within a building, due to variations in factors such as internal heat 

load, local delivery of heating or air conditioning, can make this consistent temperature 

distribution unachievable.  Some studies showed that providing thermal satisfaction to 80% of 

a building’s occupants may be far from achieved in practice. According to Haghighat et al., 

even though thermal comfort parameters in buildings were set according to the ASHRAE 

standards, it has been found that 32% of the occupants were dissatisfied [7].  In a follow-up 

study, they found more than 56% of the occupants dissatisfied with overall office air quality – 

only 63.4% of their indoor observations fell into the summer comfort zone, and 26.9% into 

the winter zone in their feedback survey, conducted in 12 mechanically ventilated buildings 

with 877 occupants [8], .  In many other studies, it has been found that while ASHRAE 

thermal comfort, air quality, etc. requirements were met in the design and maintenance of 

facilities, many more than 20% of the occupants were dissatisfied with thermal comfort and 

indoor air quality [9], [10], [11], [12].   

There is a growing list of researchers and practitioners who have found that allowing 

occupants control over their personal environment leads to increased comfort and 

productivity.  Considering a traditional approach to thermal comfort, acceptable to 80%, 

overall workplace productivity is likely more affected by large numbers of slightly dissatisfied 
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employees rather than a very few hypersensitive employees [10].  Therefore, if productivity is 

to be increased effectively the majority of employees, not just those that complain, must be 

given some level of personal control.  Fisk [18] estimates the potential U.S. annual productivity 

gain from improved worker performance from changes in thermal environment and lighting to 

be between $20 billion and $160 billion (1996 U.S. $).  Wyon [21] predicted that by providing 

individual control equivalent to ±3°C, productivity would increase 2.7% for logical thinking, 

7.0% for general office work, 3.4% for very skilled manual work, and 8.6% for very rapid 

manual work.  In a later study with field observations, Wyon [22] showed that poor air quality, 

resulting from low outdoor air supply rate and uncomfortable temperatures can have a 

negative effect on office productivity in the range of 6-9%.   

Figure 1.1 shows average annual commercial building costs in dollars per square foot.  

Employee salaries are nearly ten times more costly than the next highest expense, rent.  

Utilities which we can consider to include all HVAC operation costs, is less than 1% of 

employee salaries.  This means that if it were possible to increase the productivity of the 

employees by 1%, the equivalent monetary gain is equal to the entire building utility cost.  

Surely this is motivation enough to explore the ability to increase worker productivity through 

increased comfort.   
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Figure 1.1 – Average annual commercial building expenses (in 1995 US dollars) [23]. 

 

With the benefits of personal environmental control (PEC) so overwhelmingly clear, there 

must be a reason for the industry’s reluctance for widespread adoption of individual control.  

The explanation is two fold:  (1) the high uncertainty of measuring an increase in productivity, 

and (2) increased energy costs.  As mentioned before, typical HVAC systems account for 

between 40-60% of a commercial building’s overall energy consumption.  Building owners are 

reluctant to adopt personal environmental control systems that will likely increase the energy 

usage of a building for the promise of more productive employees, given the high uncertainty 

of the latter.  Energy costs, while small compared to employee salaries, are still a major 

commercial expense and are very easily measured, whereas productivity gains due to improved 

indoor environmental quality are much more difficult to measure.  In addition, there is an 

associated increase in initial construction costs.  Lorsch and Abdou [24] note one instance of a 
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federal building manager who spent $1 million on personal control and never saw concrete 

evidence of an increase in productivity.  With experiences like this it is easy to understand why 

building owners are hesitant to risk the increased costs associated with personal environmental 

control.  Unfortunately the true energy cost associated with the adoption of personal 

environmental control is relatively unknown.  Often PEC systems are installed in conjunction 

with other green building, energy saving enhancements that make it difficult to isolate the PEC 

contribution to building energy costs observed in field studies [25].   

This study proposes an intelligent control strategy, which approaches the “have it your 

way” (HIYW) ideal with no increase, or possibly even a savings in energy consumption by 

taking advantage of the tolerance that individuals have to small variations in their 

environmental conditions.  

In the next section thermal comfort will be discussed, including a literature survey and 

a proposed model of individual thermal satisfaction.  Then, in section three, different 

approaches to the  selection of thermal profile in a building, and their implication in thermal 

comfort and energy consumption will be explained. 
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2 Thermal Comfort 

2.1 Previous Studies 

Comfort of occupants is a vital aspect in the control of indoor environments.  There have 

been a variety of studies about thermal comfort indices in the literature.  The realistic model of 

energy exchange between the skin surface and the ambient environment has been the key 

factor of thermal comfort indices.  The indices of human response to the thermal environment 

based on this rational model have been successful.  The first study about thermal comfort was 

proposed by Houghton and Yaglou [26].  They presented the first temperature scale in terms 

of dry bulb and humidity in order to measure the thermal comfort of the environment, and 

this scale, which is the original American Society of Heating and Ventilating Engineers 

(ASHVE) Effective Temperature comfort chart, was widely used for almost 50 years over the 

world.  Yaglou reduced the effect of humidity towards lower temperatures in his scale [27], and 

Winslow et al. defined a skin wettedness index of thermal discomfort in terms of the part of 

the body surface [28].  Two concentric cylinders, which are a core cylinder and a thin skin 

cylinder surrounding it, had been used to model the human body.  His index predicts thermal 

discomfort using skin wettedness and temperature.  After 1930s, there was a considerable 

increase in the studies about making a rational predict of comfort and the body and the skin 

temperatures.  In 1971, Gagge et al. showed how important dry bulb temperature and 

humidity are in considering comfort [29].  The introduced new Effective Temperature (ET*), 

and SET* scale by Gagge et al. are based on the rationalization of the original ASHVE ET 

comfort chart.  SET* stands for an effective temperature relative to a standard person in a 

standard environment.  They used the same cylindrical model of the human body as the one 

Winslow used.  Fanger presented a new and rational approach to thermal comfort at [30].  
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Based on his experiments among college students, his indicatory comfort equation generated 

the combination of environmental parameters in order to produce optimal thermal comfort.  

But this comfort equation was not applicable for the prediction of a certain environmental 

condition.  Starting from this comfort equation, Fanger introduced a new thermal sensation 

index, which makes it possible to estimate thermal satisfaction of the whole population under 

any environmental conditions [3].  Unlike Gagge et al.’s ET*, which specifically takes into 

account temperature and humidity, Fanger’s Predicted Mean Vote (PMV) consists of 7-point 

scale, as shown in Table 2.1, and accounts for the following six principal variables:  

1. metabolic rate (met) 

2. clothing (clo) 

3. air temperature (oC) 

4. radiant temperature (oC) 

5. air velocity (m/s) 

6. relative humidity (%).  

PMV has been widely accepted as an overall comfort index, and also accepted as a seven-point 

psycho-physical ASHRAE scale.  In addition to this PMV scale, Fanger also explained how 

acceptable the mean vote is by giving a relationship between the “Predicted Percentage of 

Dissatisfied” (PPD) and PMV, based on experiments conducted with 1296 subjects.  In his 

experiments, he allowed subjects to vote about their thermal satisfaction based on his seven-

point scale. Using Gagge et al.’s definition of dissatisfaction [31], Fanger classified the people 

voting –3 (cold), -2 (cool), +2 (warm), and +3 (hot) as dissatisfied, and the people voting –1 

(slightly cool), 0 (neutral), and +1 (slightly warm) as satisfied.  This relationship, which is 

shown by the curve in Figure 2.1, has been adopted by ASHRAE and ISO as a standard of the 

thermal satisfaction of human occupancy [5][6] and widely accepted by the industry. 
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Table 2.1 – 7-Point PMV Scale 

Vote Meaning 

-3 Cold 

-2 Cool 

-1 Slightly cool 

  0 Neutral 

+1 Slightly warm 

+2 Warm 

+3 Hot 
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Figure 2.1 – Predicted Percentage of Dissatisfied (PPD) as a function of  

Predicted Mean Vote (PMV) 

Both PMV and ET* use the steady-state heat transfer between a clothed human body and the 

environment.  In order to take account of humidity effects better, Gagge et al. modified 
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Fanger’s Predicted Mean Vote equation by introducing a new thermal sensation index, called 

PMV* [32].  They proposed the new PMV* index for any humid or dry environment by 

substituting operative temperature in Fanger’s PMV equation with SET*.  PMV is based on the 

thermal comfort for a large group of people for any environmental conditions.  But, in general, 

the proper thermal comfort variables for one occupant will be different for one another.  

These variables also depend on national-geographic location, age, sex, health, and weight.  

McNall et al.’s showed women more sensitive than men to the temperature variations [33].  In 

order to deal with personal differences, Federspiel and Asada derived a new thermal sensation 

index based on the same idea as Fanger’s Predicted Mean Vote with some basic assumptions 

[34].  Their user-adaptive PMV-like index is based on estimating the parameters according to 

the obtained thermal sensation ratings of the occupant.  With this adaptation, the predicted 

thermal sensation rating more closely matches the actual rating acquired of the occupant.  

Another adaptive model of thermal comfort has been proposed by de Dear et al. for Naturally 

Ventilated (NV) buildings [35].  They derived an adaptive model from the temperature 

preferences in terms of outdoor effective temperature in NV buildings by using the field 

experiments results of ASHRAE RP-884.  They built a large database of research results of the 

22346 observations compiled in the 160 buildings from all over the world.  In this field 

experiments, occupants of NV buildings have been found comfortable in a wider range of 

temperatures than the occupants of buildings with centrally controlled HVAC.  They also 

showed an explicit dependency of the adaptive model to the indoor comfort temperatures [2].  

In their next study [36], they investigated how personal control of operable windows impacts 

on occupant comfort and local thermal conditions with another ASHRAE field project RP-

1161.  They collected 1000 survey responses of the occupants having the degree of control 

over the windows in a NV building in two main seasons.  Their results indicated significantly 
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diverse thermal responses of the occupants with different degrees of personal control, even 

when they were at the same clothing, activity levels and thermal environmental conditions.  

This wider comfort zone in the NV buildings, which is provided by personal control, has the 

potential of significant energy savings by lightening up thermal comfort standards and 

tolerating more variable indoor temperatures. 

There have only been a handful of researchers who have modeled the energy usage of 

buildings equipped with occupant controlled distributed environmental control systems.  Seem 

and Braun [37] compared HVAC and lighting costs of personal environmental control (PEC) 

with those of conventional variable air volume (VAV) systems through computer simulations.  

Each occupant had a desktop PEC equipped with an occupancy sensor.  The sensor also 

controlled local task lighting.  The PEC allowed occupants to control the temperature and 

flow rate of the airflow through a radiant heating panel and local fan.  In addition to each 

PEC, underfloor diffusers were also included to provide overall conditioning to the space. 

Cooling was provided through a chilled water system while heat was provided through 

localized heating coils.  Seem and Braun modeled one floor (45,000 sq. ft) of a multi-story 

building in Madison, WI with 360 total occupants.   The building was modeled using TRNSYS 

[38] by dividing the building into three well mixed zones.  Each PEC had different occupied 

and non-occupied heating and cooling set points, so when an occupant leaves his/her 

workstation the set points are relaxed.  Electricity was used to provide cooling power while 

natural gas was used to provide heating power at an assumed one-third the cost of electricity.  

Radiant heating panels, however, used electricity.   In their analysis Seem and Braun neglected 

the heat transfer between the individual workstations/offices.  In each of the three zones, 

there were at least 80 occupants, all of whom were modeled as having the same temperature.  

The energy costs associated with maintaining different personal temperatures within these 
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zones was not considered.  That is, each workstation/office was assumed to be maintained at 

the same temperature when occupied.  Overall the operating costs of PEC systems costs were 

found to be between 2-15% greater than the VAV systems.  However, if occupancy rates of 

workstations fell below 60% then PEC systems resulted in a net savings of energy because of 

the occupancy sensor adjusting the lighting and workstation temperature. 

Glicksman and Taub [39] modeled occupant controlled HVAC systems using computer 

simulations.  Unlike the previous study by Seem and Braun, Glicksman and Taub accounted 

for the heat transfer between individual zones.  A model was created where individual nodes 

represented conditioned cubicles equipped with occupant controlled HVAC devices.  The area 

between the cubicles and the ceiling was treated as a single well-mixed zone.  Glicksman and 

Taub modeled an interior region on a floor of a multiple story office building.  This interior 

region was an open-plan office space consisting of only cubicles with no interaction with 

outside weather conditions.  A conventional mixing ventilation system was compared with a 

new occupant controlled underfloor air distribution system.  Random processes were used to 

model the inhabitance of the occupants at their workstations as well as their desired 

temperature set points.   The local occupant fans as well as the lighting and equipment 

(computer) is controlled by an occupant sensor.  The preferred temperature for each occupant 

was taken from a Gaussian distribution with a mean of 23°C and a standard deviation of 

1.5°C.  From this distribution, temperatures were taken and assigned at random within the 

building model.  This study estimated a substantial savings in the adoption of a floor based 

system.  They predicted an annual energy savings of 13% for a non-uniform temperature 

distribution and a 21% savings for a uniform temperature distribution over a conventional 

mixing ventilation system using the same HVAC equipment.  This is largely a result of the 

stratification within the room, reduced conditioning of the corridor, and occupancy sensors 
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which reduce the heat load in unoccupied rooms.  The energy penalty (8%) associated with the 

non-uniform (i.e. individual control) temperature distribution over a uniform distribution was 

driven by the energy penalty of the cooler than average rooms.   

 

2.2 Individual Comfort 

All the work in the literature related to thermal comfort and its control applications have been 

based on the thermal satisfaction of a population of building occupants.  They have not taken 

into account individual thermal satisfaction.  For instance, when 90% of population is satisfied 

according to ASHRAE Standard 55-2004, the remaining occupants may be persistently 

dissatisfied at the same conditions.  Research has indicated that personally controlled systems 

increase productivity, and remain people comfortable in a wide range of thermal conditions.  

In this study, we approached the thermal comfort from the individual point of view. 

The occupant comfort has been modeled by a method inspired by Fanger’s PMV and PPD [3].  

We developed a model of personal dissatisfaction that generates population results closely 

match the well-established PPD-PMV curve by introducing a new measure: the Degree of 

Individual Dissatisfaction (DID): 

 ( ) ( )
2

32tanh1
DID

−+
=

vote
vote , ( 2.1 ) 

where an individual’s vote (Figure 2.3) is in terms of the surrounding indoor temperature (T) 

and two parameters unfolding individual preferences: T0, which is the desired temperature of 

occupant, and ΔT, which is the temperature tolerance of the occupant at the vote value of 1.5, 

or –1.5.  



Report No. DE-FG02-03ER63694-F1 
 

 13

 ( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Δ
−

Δ−<−

Δ+>+

=

otherwise
T
TT

TTT

TTT

T

,5.1

2,3

2,3

vote
0

0

0

 ( 2.2 ) 

Figure 2.2 demonstrates a satisfaction curve of a given individual.  Unlike the previous studies, 

which accepted two-state satisfaction criteria, we proposed a fuzzy satisfaction curve (Figure 

2.2) as a function of thermal index instead of binary satisfaction.  While a person might be 

comfortable within a certain range of temperature in the binary case, he or she will be 

dissatisfied even a tenth of a degree of outside the range with this comfort criterion.  In 

addition to our linear comfort index, which is an individual vote (Figure 2.3), we generated 

these curves for individual thermal preferences.  

 

-3 -2 -1 0 1 2 3
0

0.2

0.4
0.5
0.6

0.8

1

vote (-3, +3)

D
eg

re
e 

of
 In

di
vi

du
al

 D
is

sa
tis

fa
ct

io
n

(D
ID

)

T0-ΔT T0+ΔT

T0

 
Figure 2.2 – Individual Dissatisfaction Curve 
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We assumed T0 and ΔT are normally distributed random variables.  We run the Monte-Carlo 

simulation for the mean values and standard deviations of T0 and ΔT by generating 1000 

individuals of a population at each simulation step.  We validated these individual equations by 

comparing the cumulative population curve of the percentage of dissatisfied, which is the 

mean values of 1000 individuals’ DID values like an example given in Figure 2.5, with the well-

known original PPD curve of ASHRAE Standard 55 (Figure 2.1).  Figure 2.6 has given the 

closest match to the PPD curve with the root mean squared error of ~1%.  We have found 

the mean value of desired temperatures is 24oC, and the standard deviation of 1.2oC.  Figure 

2.4 is a histogram of 49 occupants’ neutral temperatures. 
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Figure 2.4 – Histogram of 49 occupants’ neutral temperature 
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Figure 2.5 – An example of the DID curves for a given population 
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Figure 2.6 – Original and Generated PPD curves 
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3 Building Temperature Control 

Here we will discuss the previous building temperature control studies.  Then we will 

introduce our approach to minimize energy consumption of building temperature control 

systems without sacrificing thermal comfort. 

  

3.1 Literature Review 

3.1.1 Historic Perspective 

The studies about automatic control for building applications have been started by Butz with 

the invention of a thermostat in 1885 [40].  He called his simple device as damper flapper. The 

need of mixing air components was mentioned at the first ASHVE meeting in 1894 [41].  

After this meeting, it has been started to control indoor environment with the inherent 

pneumatic control systems rather than the manual control like opening a window when the 

indoor was hot.  This control system had become a primary control method of the building 

applications until 1970s.   

The need of air temperature regulation was mentioned by Kinealy in 1903 [42].  He defined 

the indoor temperature as a function of occupant’s activities, and suggested some temperature 

intervals according to the activity, and healthiness of the occupant.  He also defined necessary 

conditions for temperature control.  Jones proposed a method for controlling the airflow rate 

by using dampers in 1906 [43].  In 1912, Donnelly recommended night setback control 

methodology and optimum start time in order to conserve energy and improve comfort in his 

study, which became the first research related to energy conservation in environmental control 

systems [44].  Winslow and Maglott maintained the proper amount of ventilation air by 
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measuring the carbon dioxide (CO2) level in the space, and they also recommended a 

satisfactory level of CO2 amount at their study made in a large office building [45].   

The researches related to energy conservation had been increased with the first energy crises, 

which lasted three years in 1914.  From the mid-1920s to mid-1930s there had been many 

control systems introduced [41].  Before the used of electrical control devices and the 

thermocouples for measuring temperature instead of pneumatic control devices, control was 

restricted to on/off control.  Parmalee and Huebscher ignited the studies about temperature 

and space control of HVAC systems by proposing the use of thermocouples [46].  Because of 

the continuous increase in the energy cost after the second energy (oil) crises in 1973, the 

demand of energy conservation had been increased.  With this energy crisis, the night setback 

control came back with the day setback function.  The studies about the energy savings had 

been accelerated with the introduction of the first computers with advanced technology.  

Shavit proposed the first energy conservation algorithm by using a microprocessor-based 

system in 1976 [47].  He proposed the annual savings results of the fan system optimization 

algorithm such as enthalpy control and reset of cooling coil from the zone of the highest 

demand with floating space temperature [48].  

There have been a variety of studies related to HVAC systems in the literature.  Many 

advanced control strategies have been applied to HVAC systems such as the conventional 

proportional-integral-derivative (PID) control, auto-tuned PI or PID control, predictive model 

control, optimal control, decentralized control, fuzzy control, neural networks, genetic 

algorithms, and evolutionary algorithms.  We can classify them into three subcategories: 

HVAC System Performance related to temperature or airflow control, Comfort Control, and 

Energy Conservation.  We will discuss these categorizes at the following sections. 
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3.1.2 Temperature and Airflow Control 

After the introduction of the direct digital control (DDC), PID control became the competitor 

of the traditional pneumatic control.  But the PID control embedded on a microprocessor was 

not accepted immediately [41].  Today, a microprocessor is the center of every control 

strategies. 

In the literature, there have been many control studies related to HVAC system performance.  

But mostly, HVAC systems have been treated as temperature control problems.  Cherchas et 

al. proposed an optimal DDC algorithm by using a PID in order to control dry bulb 

temperature in a single zone space [49].  They simulated their algorithms with the bilinear 

mathematical model of an HVAC system.  Nesler [50] and Pinella et al. [51] introduced a self-

tuning controller in 1986.  While Kasahara et al. [52] and Qu et al. [53] introduced a PI and 

PID controller, respectively by assuming HVAC system as a first order plus dead time system, 

Wang et al. used second order plus dead time function for modeling HVAC system to simulate 

their multivariable PID controller [54]. In order to adjust PID parameters automatically, a 

variety of methods have been applied for temperature control such as genetic algorithms (GA) 

[55] and pattern recognition approach [56].  Xu et al. concerned about the airflow control 

rather than the temperature by applying a different technique for tuning PID parameters [57], 

while Bi et al. used their PID to control both airflow and temperature [58]. 

Since PID has to be tuned for other applications, some model-based predictive control 

methods have been implemented for temperature and airflow control.  In these studies, in 

order to estimate future state of the HVAC process, researchers used a method for modeling 

HVAC system such as a system identification technique [59], neural network [60][61] or fuzzy 

logic [62][63][64][65].  While some used state space equations of HVAC system for simulation, 

some used real systems. 
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Fuzzy logic also has been used in some applications to control HVAC systems directly .  Lea et 

al. introduced a fuzzy logic controller for regulating the airflow to the separate zones[66][67].  

Results of the model-predictive control strategies have been judged against those of the 

conventional PI or PID control to show the improvements of the their methods. 

There was no consideration of comfort and energy conservation in all these studies; the only 

aim has been controlling temperature and airflow consistently. 

 

3.1.3 Comfort Control 

As mentioned in the previous section, most HVAC systems are considered as air temperature 

regulator, and they don’t account for the thermal comfort of the population.  Although it is 

obvious to make the occupants comfortable rather than the air temperature control, there 

haven’t been a variety of studies about thermal comfort control unlike temperature and airflow 

control due to its limitations.  Researchers mostly developed control systems, which depend 

on the well-known Fanger’s PMV index for the prediction of thermal sensation.  Since PMV is 

based on the average thermal sensation of the occupants, which means the thermal sensation 

of the whole population, the appropriate parameters of thermal sensation for the population 

may not be suitable for some occupants among that population.  Due to the individual 

biological differences it will be unattainable to satisfy everyone in the same environment at the 

same time.  Because of this limitation of PMV index, our thermal comfort approach has been 

based on individual preferences.  PMV has been derived as a comfort equation in terms of six 

variables, which are metabolic rate (activity level), clothing insulation, air temperature, radiant 

temperature, air velocity, and relative humidity.  Since only iterative solutions exist for these 

parameters, it is hard to apply this index to the real applications.  All the environmental 
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measurements of these six variables have to be done on the occupant, which is not applicable 

for real time control problems [68].   

Even though it has some limitations, On/Off, PID, and fuzzy logic control, which applied to 

comfort index control, has been found in the literature.  Zhou et al. introduced a PID control 

strategy of IAQ with if-then rules [69].  They developed a time-dependent iterative model of 

CO2 concentration in the zone. 

Thermal comfort has been concerned as a fuzzy concept in some studies rather than the crisp 

standardized comfort zone.  Dounis et al. introduced a fuzzy logic controller (FLC) using a set 

of fuzzy rules for PMV control [70].  They used calculated PMV and ambient temperature 

values as controller inputs in order to determine auxiliary heating, cooling and opening angle 

of the windows.  They emulated the indoor temperature with the mathematical models of heat 

flux through window, auxiliary heating, and heat transfer due to the ventilation.  Their 

simulation results showed FLC could maintain the PMV index between –0.2 and +0.2 range 

for two seasons, January and June.  Dounis et al. also presented their results with additional 

mathematical models at [71].  They also used the mathematical models of heat transfer due to 

convection, and indoor air’s relative humidity for indoor temperature.  In addition to previous 

study, they also modeled the wall temperatures with radiative heat exchange, and heat flow 

through walls, and emulated the outdoor climate such as temperature, wind speed, and 

outdoor relative humidity.  Gouda et al. compared the comfort control strategies based on 

PID and FLC [72].  Their results indicated that the performance of FLC based on PMV was 

better than that of PID.  They simulated the HVAC system and its controllers in 

MATLAB/Simulink.  Chu et al. preferred to use the effective temperature (ET*) rather than 

the PMV index [73], since it is a simpler index, which is based on the combination of humidity 

and temperature, than PMV, which is based on the six different environmental variables.  They 
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proposed two separate FLC based on the estimation of the least enthalpy.  While one of their 

controllers infers the action from indoor temperature and relative humidity, the other one does 

it from the outdoor temperature and the current ET*.  They compared the experimental results 

of FLC with those of the thermostat controlled another room.  While LEE-based FLC 

provided the average thermal comfort level of 99.84%, the conventional temperature control 

did those of 87.84%.   

Some of the comfort control studies have been considered with the energy conservation 

together.  For instance, Gouda et al. [72] and Chu et al. [73] presented energy conservation 

results while providing thermal comfort.  Gouda et al. achieved 20% energy savings by using 

FLC with respect to the conventional PMV based PID controller.  Chu et al. reached 35% 

savings with FLC relative to the conventional temperature control.  These studies will be 

discussed in detail with those related to the energy consumption in the next section.  

All these studies mentioned above used either PMV or ET* indices, which are the population-

based thermal sensation indices.  Even when they provide acceptable PMV or ET* ranges, 

there will always be some occupants dissatisfied due to the individual differences.  Federspiel 

and Asada proposed an approach based on a particular occupant rather than the average 

person under the assumption of a linear relationship between environmental variables and 

thermal sensation index [34].  Since it is based on a specific occupant, their comfort criterion 

has been the closest one to ours from the comfort point of view.  Their linearly parameterized 

user-adaptable thermal sensation index was derived based on the steady-state heat transfer 

between the human and the nearby environment like PMV.  They estimated the parameters of 

their index with the acquired thermal sensation ratings of the occupant by using constrained 

recursive least squares algorithm.  After the estimation of the parameters, they showed the 
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simulation results of on/off and PID control of their index by using a lumped parameter 

model of HVAC system in heating and cooling mode.   

Unlike our approach, they used a binary satisfaction criterion like Fanger such that they 

considered people, voting –3, -2, +2, and +3, dissatisfied.  While a person might be 

comfortable within a certain range of temperature, he or she will be dissatisfied even a tenth of 

a degree of outside the range with this comfort criterion.  In addition to our linear comfort 

index, which is an individual vote (Figure 2.3), we proposed a fuzzy satisfaction curve (Figure 

2.2) as a function of thermal index instead of binary satisfaction.  We generated these curves 

for individual thermal preferences.  

 

3.1.4 Energy Conservation 

The second energy crisis in 1973 had increased the importance of energy conservation 

tremendously in HVAC system control applications.  While only energy savings has been 

considered by itself in some studies, the others have concerned both energy conservation and 

thermal comfort together as we did.  One of the studies was traditional night setback control 

to reduce energy consumption.  It returned again after its introduction in the fist energy crisis 

at the World War I such as Schade’s recommendation [74].  By lowering the space temperature 

at night, he achieved from 5.5% to 20% savings depending on the climate in his computer 

simulation.  There have been many different strategies applied to HVAC system energy 

conservation with advancing technology such as optimal control, PID, fuzzy logic control, and 

evolutionary algorithms. 

Some researchers took in hand optimal control with a few variables by maintaining a fixed 

temperature set point to reduce energy consumption in HVAC systems.  Nizet et al. [75], 

Boyens et al. [76], Ke et al. [77], and House et al. [78] tried to minimize a cost function 
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depending on only energy consumption of HVAC system without considering thermal 

comfort.  House and Smith took into consideration the reducing of energy consumption with 

thermal comfort in their studies by adding Fanger’s PMV index into their cost function.  They 

tried to find the optimal set points of temperature, airflow, and PMV under time varying 

thermal load conditions [79], and in another study, they determined the night setback strategy 

by optimal controller [80].  They used a nonlinear programming technique in their studies.  

Simmonds also minimized a cost function based on energy and PMV in his study [81].  Unlike 

these studies, Liu and He proposed an optimal control strategy based on Federspiel’s user-

adaptable comfort index instead of PMV and power consumption by using steepest descent 

optimization [82].  All these optimal control studies tried to find optimal setpoints to minimize 

energy consumption.  However, Wright and Hanby concerned to minimize energy 

consumption during the design and installation process of HVAC system [83].  They suggested 

the optimum selection of system components and operating points of the components 

together. 

In addition to optimal control strategies, auto-tuned PID based control techniques also used to 

reduce energy consumption.  PID wasn’t accepted immediately after its introduction in 1981. 

However, it has been widely used in this area today due to its simplicity and low cost like on-

off control.  PIDs are mostly used for reducing energy consumption without thermal comfort 

consideration.  Kaya et al. proposed an optimal PI control to find out the energy savings in 

HVAC equipped space [84].  So et al. proposed a self-tuning PID controller for air handling 

unit (AHU) of HVAC system by using recursive least squares system identification to reduce 

energy consumption [85].  They achieved 6.62% energy savings when comparing the 

simulation results of AHU computer model with those of a well-tuned PID controller.  

Kulkarni and Hong tried to improve thermal comfort and reduce energy consumption with 
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respect to two-position (on/off) control by using PI control [86].  They simulated the state-

space building model in MATLAB/Simulink, they also modeled the outdoor temperature on a 

sinusoidal function.  So et al presented a computer vision based control system in another 

interesting study [87].  They tried the find the number of residents, and estimated the 

variations in thermal load to assist the conventional PID controller.  They proposed five 

control rules for handling the sudden rush and evacuations.  By comparing the experimental 

results with PID alone, they succeeded in energy conservation with up to 10.7% savings.  

Some authors concerned PMV control with both saving energy consumption and improving 

thermal comfort.  MacArthur suggested the use of PMV-based comfort control to maintain 

uniform comfort level, and to reduce power consumption [88].  He applied the PI control of 

PMV, and he reached 10.1% savings in his comparison of the computer simulation results 

with conventional on-off control.  Yang and Su developed an intelligent control to adjust air 

velocity automatically and to maintain PMV index within comfort zone [89].  They built two 

separate rooms, which was installed their intelligent control, and the conventional temperature 

control, respectively in their field experiment.  They achieved significant energy savings with 

respect to conventional control.  Kolokotsa et al. and Calvino et al. introduced an adaptive 

fuzzy PID controller to reduce energy consumption, and maintain thermal comfort.  

Kolokotsa et al. used PMV, CO2 index, and luminance level as controller inputs [90].  After the 

performance of their simulations in MATLAB/Simulink toolbox, Sibil, they succeeded in the 

reduction of energy consumption up to 25-30% with respect to conventional PID and on-off 

controller.  Calvino et al. proposed a fuzzy logic PID controller, which avoided the modeling 

of indoor environment and outdoor climate, in their study [91].  Their aim was to reduce fan 

power and keep the PMV index within the comfort zone.  They used PMV error, and its 

derivative as FLC inputs.   
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Since PID settings are not universally applicable, undesirable response and increased energy 

consumption may occur when it is applied to another system with different parameters.  Fuzzy 

logic has also been used to reduce energy consumption by itself rather than modeling PID 

controller with fuzzy rules, and membership functions.  Yamada et al. modeled the PMV index 

with neural network by using its six variables to estimate the current PMV value [92].  In order 

to reach target PMV value, they proposed a FLC, which input is PMV error, and output is 

temperature set point.  They reached 18% savings in their simulation as compared with the 

conventional control system.  Gouda et al. also simulated a fuzzy logic control of PMV by 

modeling the internal, and outdoor enthalpy and saturation pressure in MATLAB [72].  They 

reached 20% savings with respect to the conventional PID control.  Chu et al. proposed a 

fuzzy controller for thermal comfort and energy savings [73]. Unlike other studies, they 

preferred to use effective temperature (ET*) as a comfort index rather than the PMV index.  

They proposed two separate FLC based on the estimation of the least enthalpy.  While one of 

their controllers infers the action from indoor temperature and relative humidity, the other one 

does it from the outdoor temperature and the current ET*.  They compared the experimental 

results of FLC with those of the thermostat controlled another room.  While LEE-based FLC 

provided the average thermal comfort level of 99.84%, the conventional temperature control 

did those of 87.84%.  They also saved 35% energy over the conventional control with FLC 

based on ET*.  Alcala et al. presented a solution to improve the performance of fuzzy logic 

controller by genetic algorithms [93].  They performed it to optimize the membership 

functions of FLC depending on different criteria such as energy consumption, occupants’ 

thermal comfort, and indoor air quality.  They implemented the FLC with PMV, difference 

between supply and room temperature, CO2 concentration, outdoor temperature, and HVAC 

system actuators such as valve position, fan speed, etc.  Both simulated and experimental 
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results showed 11.6% and 13.34% savings over the conventional on-off controller.  Alcala et 

al. also proposed different strategy concerning both energy consumption and indoor comfort 

requirements by FLC with GA [94].  Genetic algorithm process was evaluated to perform rule 

weight derivation of linguistic fuzzy rules and their selections.  They implemented the 

simulations of on/off, FLC alone, FLC considering rule weights (w), and FLC considering 

both rule weights and selections (ws) by using an HVAC model based on manufacturer data.  

Their comparisons of three FLCs with on-off control showed that significant savings on 

energy consumption while keeping the population within comfort zone.  FLC resulted in 

neutral PMV with 9.5% energy savings.  Improved energy savings was achieved with proposed 

methodologies, which are FLCw, and FLCws, resulting in 13.21% and 14.05% savings over 

conventional control, respectively.  However, while FLC considering rule weights resulted in 

0.1 PMV, the other one did 0.6 PMV. 

With the proceeding technology, evolutionary algorithms, such as genetic algorithms, etc., have 

also been applied to reduce energy consumption in HVAC system applications.  Jin et al. 

proposed an approach based on the prediction of energy performance of HVAC system [95].  

CO2 concentration of each zone, and outdoor air, supply air flow, temperature, and humidity, 

outdoor air temperature, and humidity have been used as input data.  After the online 

estimation of the system energy performance, a genetic algorithm was used to find the optimal 

set point of outdoor air ratio of AHU by minimizing the energy increment function without 

thermal comfort consideration.  Their results achieved the approximately 7.8% energy savings 

over the reset control.  Lu et al. introduced a modified genetic algorithm to find set points of 

HVAC system to minimize overall system energy performance [96][97].  Adaptive Neuro-

Fuzzy system has been used to model duct and pipe network.  Their results achieved from 2% 

to 12% energy savings over the fixed set point control for different cases such as optimal 
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supply temperature vs. fixed one, etc.  Fong et al. have applied an evolutionary algorithm by 

considering reset the suitable operating parameters would have the potential for energy 

conservation without sacrificing thermal comfort [98].  Evolutionary algorithm was used to 

setup a reset scheme of chilled water and supply air temperature for HVAC system in a local 

subway station.  By just optimizing chilled water temperature, they reached almost same energy 

consumption as that of current settings.  However, when they applied optimization to both 

settings yearly, and monthly, they achieved 2.86% and 6.74% energy savings, respectively over 

the existing settings.  Nassif et al. preferred to use two objectives at the same time for real-time 

minimization of energy consumption and thermal discomfort in HVAC system [99].  The two-

objective genetic algorithm was performed with 70 zone temperatures, supply duct static 

pressure, and supply air temperature as design variables in the simulation of a simplified VAV 

system.  They developed the mathematical models of fan, damper, and cooling coil.  While one 

of the objective functions was to reduce energy usage of HVAC system, they employed 

predicted percentage of dissatisfied (PPD) instead of PMV alone to improve thermal objective 

function.  The constraints were the limitations on the HVAC system operation such as 

minimum airflow rates of zone, and fan, and the design capacity of the components.  Multi-

objective genetic algorithm (MOGA) such as their study gives a set of optimal solutions rather 

than a one optimal solution, which is called Pareto-optimal set.  Energy savings from 18.8% to 

19.5% has been achieved while satisfying the minimum requirements of zone airflow and 

thermal comfort over the actual energy usage.  They applied MOGA with an additional design 

variable, which is chilled water supply temperature of a simplified VAV system [100].  

Determining optimal set points for an existing HVAV system based on PPD and energy 

consumption minimization by MOGA resulted in 19.5% less energy consumption than the 

actual usage for 2 summer days.  In another study [101], they reduced the number of design 
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variables by using 5 zone temperature set points instead of 70 ones.  Their MOGA result 

showed 16% energy savings for 2 summer months while assuring the minimum requirements 

of zone airflow and thermal comfort over the actual energy consumption.  MOGA has also 

been applied to HVAC system during the design process by Wright et al. [102].  They 

considered the design procedure of buildings as a multi-objective optimization problem.  Their 

method identified the optimum pay-off between the occupants’ thermal comfort and the 

energy cost of a building, which means the components of building thermal design.  They 

simulated their method with 200 variables with set points and the sizes of the system 

components by using a fan model derived from the manufacturer data.  Their results of 

Pareto-optimal set of optimal solutions based on PPD and energy cost of building showed a 

large potential for building optimization problems. 

3.1.5 Individual comfort 

A variety of studies about HVAC systems, temperature control systems, and thermal comfort 

have been reviewed so far.  While some authors considered only the HVAC system 

performance, some just considered thermal comfort of occupants, and energy consumption.  

We mostly focused on the studies related to both thermal comfort and energy consumption of 

HVAC system.  However, It has been obvious that the common denominator of all these 

studies is that they are concerned with the comfort of the majority of a population, by using in 

general Fanger’s predicted percentage of dissatisfied which is related to his PMV equation. 

Thus far, there have been no studies that optimize the comfort level of all individual occupants 

as well as energy consumption.  
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3.2 Our Approach 

Improvement of the thermal satisfaction of a population in a building with control approaches 

does not take into consideration of individual thermal satisfaction.  However, some of the 

occupants might have persistent dissatisfaction in a space where 90% of the population is 

satisfied.  Our approach prevents intolerable individual dissatisfaction, while keeping the 

population PPD at or below 10%.  In order to do this, we developed a model of personal 

dissatisfaction (Figure 2.2) that generates population results that match the well-established 

PPD-PMV curve (Figure 2.6) [103].  We will discuss the building model, and optimization 

procedures, which we performed in this study. 

 

3.2.1 Building and Weather Model 

Our approach focuses on a typical single story office building, which we modeled with a 

thermal circuit network coupled with a typical HVAC system consisting of a heat pump and a 

furnace.  The typical 600m2 office building, which is divided into 7×7 zones (), was modeled 

using a temperature-bin-based lumped parameter approach in MATLAB [104].  Each zone, 

which corresponds a node in a thermal circuit network, will be considered as a well-mixed 

zone of constant temperature.  Continuing with the electrical circuit analogy, each node in the 

network is connected to the other nodes and outside node via a thermal resistance.  Typical 

resistance values of common building materials have been implemented for interior walls, 

exterior walls, and windows.   
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Table 3.1 – Thermal Resistance Values 

Type Notation Value Notes 

Interior wall riwall 0.392 m2K/W Gypsum wall board wood frame 
[105] 

Exterior wall 
(and roof) rewall 2.47 m2K/W Insulated wood frame [105]  

Exterior window rwindow 0.353 m2K/W Double paned air-filled window [38] 

Inside convective heat 
transfer coefficient hin 3.06 W/m2K Common building energy simulation 

indoor value [38] 

Outside convective 
heat transfer 
coefficient 

hout 17.78 W/m2K Common building energy simulation 
outdoor value [38] 

 

Each occupied office has been considered having three different sources of internal heat 

generation: a computer, task lighting, and an occupant himself.  Figure 3.1 shows a cutout 

example of a fraction of a thermal circuit network.  Zone i (at temperature Ti) is connected to 

three neighboring zones (at temperatures Ti-1, Ti+1, and Ti+n) by a proper resistance value (Rin) 

for interior wall.  It is also connected to the outside (at temperature T0) by a proper resistance 

for exterior walls (Rout).  Each of the various zones will be connected to each other in the 

building and the outside temperature in this way. 
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Figure 3.1 – Example of thermal network circuit around zone i 

 

The outside temperature was modeled using temperature bins extracted from the Typical 

Meteorological Year (TMY2) weather files [106], which stores the 30-year average weather data 

such as temperature, solar radiation, wind speed, etc.  Hourly temperature data, which is 8760 

hours per year, was used for 15 different cities in the US representing different climate zones 

(Figure 3.2) [107].  The building HVAC sizing varied in each city depending on the restriction 

on design temperature to prevent same building model for each city.  
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Figure 3.2 – Map of DOE US climate zones 
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Figure 3.3 – Example of desired temperatures of randomly generated 49 individuals, HIYW 
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3.2.3 Optimization 

In this study, we consider satisfaction of each occupant, and we wanted to satisfy individual 

comfort needs.  In order to do that, it is easy to give them a right to adjust their own 

environments, which is called HIYW here.  Figure 3.3 is an example of HIYW system, which 

is personalized HVAC system.  Each office consists of a thermostat in this system for getting 

exactly what individuals would like by adjusting his/her own thermostats.  However, it requires 

more energy than the current systems do.  By taking advantage of individual comfort range in 

temperature scale, energy consumption has been minimized.  Our approach employs a 

gradient-based scheme to reduce energy consumption by varying office temperatures within an 

acceptable comfort range while keeping the dissatisfaction of overall population less than 10% 

PPD.  As we mentioned before, only PPD constraint doesn’t guarantee the satisfaction of each 

individual.  While 90% population is thermally satisfied, some occupants might be miserably 

dissatisfied at the same environmental conditions.  In order to prevent this miserable 

dissatisfaction for any occupant in a given population, additional constraint has been utilized 

for occupants’ comfort.  Each individual dissatisfaction was restricted to the DID level of 

20%.  Desired temperatures (T0) of each individual have been employed as initial conditions.  

We called it “Optimized HIYW”.  Figure 3.4 is an example of optimal temperature settings of 

the example population, given in Figure 3.3, at a given ambient temperature bin.  Energy 

consumption has been minimized by varying occupants’ temperature settings within a tolerable 

range, 20% DID, while keeping the thermal comfort requirement of the population, ASHRAE 

Standard 55-2004 [5].  Figure 3.5 shows Degree of Individual Dissatisfaction level of 49 

occupants while providing them optimal temperature settings (Figure 3.4).  It is also shown 

that there is no occupant over 20% DID by Figure 3.5.  
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Figure 3.4 – Example of 49 optimal temperature settings of optimized HIYW 
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Figure 3.5 – Degree of Individual Dissatisfaction Levels of 49 occupants from the Figure 3.3 

 

In the simulations, 50 different populations have been obtained by our Gaussian distributed 

functions of desired temperatures (T0), and temperature ranges (ΔT).  These individuals could 
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be assigned randomly to the offices in the building.  Figure 3.3 also is an example of desired 

temperatures of randomly distributed occupants in a single story 7×7 building.  Average of the 

optimal results of these 50 populations has been compared with the conventional HVAC 

control as baseline model.  Since it provides uniform thermal conditions (Figure 3.6) over the 

building through small number of thermostats, the conventional control is called OSFA here. 
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Figure 3.6 – Example of uniform temperature distribution of OSFA 

 

Our base line model has three types of zones: interior (center), perimeter, and corner zones to 

provide uniform temperature distribution over the building for the case of the conventional 

OSFA control as shown in Figure 3.7.  OSFA has three thermostats in three offices that 

control the other 46 remaining offices as well.   
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Figure 3.7 – Thermostat placements, and three (Corner, Perimeter, and Interior) zones of 

OSFA 
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Figure 3.8 – DID level of occupants in OSFA case for the temperature setting in Figure 3.6 

 

In order to make fair comparison, we also optimized conventional OSFA system while 

keeping the population under 10% PPD.  Unlike optimized HIYW, OSFA might provide 

dissatisfaction level of over 20% for some occupants when it provides optimal uniform 
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temperature setting for the overall building.  Figure 3.8 is an example of DID levels of the 

occupants in OSFA case.  White dots represent the dissatisfied occupants over 20% DID in 

this figure.  Red colors show the DID level of over 50%. 

We compared the both optimization results based on the yearly energy consumption.  Total 

yearly energy consumption has been determined by using both optimal energy consumption 

results for OSFA and HIYW, and extracted number of hours from TMY2 weather files for 

each of 32 outside temperature bins from –47oC to +46oC.  Energy consumption has been 

optimized to adjust the thermostat set point temperatures by utilizing “fmincon” function in 

MATLAB optimization toolbox [108].   

 

3.2.4 Fuzzy Logic Approximation 

Our approach, similar to other global optimization approaches, requires information acquired 

from all offices and cubicles, while providing a control strategy that brings energy 

consumption, individual comfort, and population comfort together.  The optimization 

employs the personal satisfaction curves of all occupants in order to seek an optimal solution 

of temperature settings in each office.  In order to do that, gradient-based optimization needs 

full central sensor connectivity from each office.  Any thermostat that does not work properly  

can cause the whole system to operate unsatisfactorily. Last, but not least, if there is any 

change in the distribution of the individuals in a building, say due to an illness or other 

absenteeism, the optimization process needs to be repeated for the system to work as 

designed.   

In order to circumvent these disadvantages and to improve the applicability of this 

approach in practical situations, we propose using a fuzzy logic approximation approach, with 

simplified sensor connectivity, and with generalized principles of the gradient optimization 
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results rather than a literal application of optimization.  Fuzzy logic approximation utilizes the 

temperature settings from the neighboring offices only, as shown in Figure 3.9.  
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Figure 3.9 – Sensor communication requirements of fuzzy logic approximation 

 

Simplifying sensor connectivity with fuzzy logic also reduces the computational complexity of 

the system.  For example, while gradient-based optimization gives the results for a city within 

10 to 15 minutes, it takes less than a second with our fuzzy logic approximation.  If any 

occupant’s preference or location changes, the optimization of whole system should be 

repeated with new settings.  Another advantage of using fuzzy logic with our model is that 

there is no need for the optimization of complete system for varying preferences or thermal 

conditions with fuzzy logic approximation.  It generalizes the gradient-based optimization 

results by using less sensor connectivity.  It is easy to retrofit in an existing building.  By using 

“genfis2” function in MATLAB fuzzy logic toolbox [108], we designed a Takagi-Sugeno type 

fuzzy inference system (FIS) [109].  However, other statistical modeling methods, including a 

variety of fuzzy logic and neural network methods can be used instead of this specific tool. 
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We considered the buildings having three types of zones: corner, perimeter, and interior zones.  

Outside temperature mostly affects corner, and perimeter offices, while interior ones are 

mostly affected by heat exchange with the neighboring offices.  Due to this kind of the 

buildings’ characteristic, we generated three different FISs for the corner, perimeter and 

interior zones.  In order to estimate the optimal temperature set points of each office, which is 

an output of FIS, four neighboring rooms’ and its own temperature set points have been used 

as inputs for our interior FIS (Figure 3.9).  In order to generate FIS of perimeter offices, the 

temperature set points of three neighboring offices, and itself, and the outside temperature 

have been used as inputs (Figure 3.10). 
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Figure 3.10 – Sensor connectivity for perimeter FIS 

 

Unlike perimeter offices, FIS of corner offices uses two-neighboring temperature set points 

and outside temperature as shown in 
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Figure 3.11 – Sensor connectivity of corner FIS 

  

The results of gradient-based optimization have been imitated by using fuzzy logic.  The 

energy consumption of 50 generated populations for each of 32 outside temperatures in three 

different cities, representing three different climate regions in the US, has been minimized by 

gradient-based scheme while keeping the population at 10% PPD, and the individuals at 20% 

DID constraints.  These cities are Phoenix, AZ (hot-dry), San Francisco, CA (warm-marine), 

and Chicago, IL (cool-humid).  Desired temperatures and these optimal temperature settings, 

which are results of gradient-based optimization, have been used to train our FIS for three 

zones of a building.  Fuzzy approximation has been implemented to both train (50 

populations), and test (10 different populations) data.  Thermal satisfaction criteria and energy 

consumption results, which were found in gradient-based scheme, have been achieved by this 

suboptimal system approximation. 
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4 Results and Conclusion 

4.1 Improved Individual Thermal Comfort with Reduced Energy Consumption 

The concern about increased energy consumption when providing individual thermal comfort 

has prevented the adoption of individual thermal control in a large majority of buildings.  This 

study has shown that, it is possible to provide improved thermal comfort to all occupants of a 

building, not only without any increase in energy consumption, but even with some energy 

savings.  

More specifically, in this study a methodology called Optimized “Have It Your Way” 

(HIYW) has been developed. This methodology takes advantage of an individual’s region of 

insensitivity to small deviations from his/her preferred temperature setting, and minimizes the 

annual energy consumption of the temperature control in a building subject to a maximum 

dissatisfaction level constraint for all individual occupants.  A straightforward gradient based 

optimization, as well as a fuzzy logic generalization of the underlying principles of the 

optimum solutions have been used as alternative implementations. Both results have been 

compared with a traditional “One Size Fits All” (OSFA) solution to demonstrate their 

improvements in both thermal comfort and energy consumption. 
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Figure 4.1 – Energy savings per year relative to OSFA. 

 

The numeric results about individual dissatisfactions showed that both HIYW and fuzzy logic 

approximation provide a Degree of Individual Dissatisfaction (DID) level of no more than 

20% for each occupant.  The OSFA method, on the other hand, does not guarantee any level 

of individual thermal comfort. For instance, for Phoenix, AZ, OSFA is likely to cause the DID 

level to exceed the 20% limit for ~15% of the occupants, and to exceed 50% for ~5% of the 

occupants.  Similar violations of individual comfort levels by the OSFA method were observed 

for other cities as well. 

In the rest of this section, results of several parameter variations are reported. 

4.2 Effects of Internal Resistance on Optimization 

The behavior of the lumped parameter thermal energy model mostly depends on the thermal 

resistance values of the interior and exterior walls.  Table 4.1 gives some examples of wall 

resistance values.  During the optimization process in this study, the internal resistance values 

corresponding to private separate offices were selected.  The interior wall thermal resistance in 
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the baseline case corresponds to a common gypsum board inside wall.  In order to investigate 

the effect of variations in internal resistance values the optimization of energy consumption 

was repeated for a variety of internal resistance values in three different cities with 20 different 

populations. 

Table 4.1– Interior resistance trials 

Trial 
No. 

Wall Resistance, 
riwall (m2K/W) 

Inside Convective Heat 
Transfer Coefficient, hi 

(W/m2K) 

Resulting 
Resistance, 
rint (m2k/W) 

Notes 

1 0.392 3.06 1.05 Baseline Case 

2 0.196a 3.06 0.85 Estimated thin partition (i.e. 
cubicle) 

3 -- 3.06 0.33 Approximates open 
workspaceb 

4 0.392 8.29 0.63 Baseline with less 
conservative hi [105] 

5 0.196a 8.29 0.44 Estimated thin partition (i.e. 
cubicle) 

6 -- 8.29 0.12 Approximates open 
workspaceb 

 

Since OSFA attempts to provide a uniform temperature over the building, the energy 

consumption in this case is not affected by internal resistances.  However, the lower internal 

resistances result in higher energy usage in the HIYW case, due to increased energy loss 

between neighboring offices [104].  In order to see the effects of internal resistance on optimal 

energy consumption, we implemented the gradient-based optimization algorithm while 

keeping same thermal comfort requirements for individuals (20% DID), and population (10% 

PPD) as constraints.  We took the average of 20 different populations from extremely low 

resistance values to our base line case (Rint=1.05 m2K/W).  Figure 4.2 gives the annual energy 

savings results with respect to OSFA for Miami, FL, Baltimore, MD, and Fairbanks, AK.  It 

has been interpreted, as internal resistance doesn’t give significant effect on annual energy 

savings even for the low resistance values.   
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Figure 4.2 – Internal resistance effects on optimization 
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Figure 4.3 – Example of thermostat set points 

 

Figure 4.3 is an example of a population in a given ambient temperature.  While red color 

represents the desired temperature set points of the individuals, green ones are the optimal 
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ones for the corresponding internal resistance values.  Blue color is the optimal set point for 

OSFA for this illustration population.  Blue and red stars represent the people, who would like 

to get coolest, and warmest temperature in the population, respectively.  Optimization reduces 

the energy loss due to the heat exchange between neighboring offices to minimize energy 

consumption.  In order to reduce energy usage when internal resistance is low, it provides 

almost identical temperatures to occupants satisfying thermal comfort requirements of both 

individuals and population. 

 

4.3 Effects of Non-uniform Internal Heat Load on Optimization 

During the all simulation process mentioned above, we assumed the internal heat loads are 

identical in each office cubicles.  OSFA can provide uniform temperature distribution under 

this assumption.  However, it is not acceptable for the real world applications.  In order to 

investigate the effects of non-uniform heat loads on the optimization results, we implemented 

the simulations by varying heat loads.  A 3-state discrete probability distribution has been used, 

which consists of 0 W, 260 W, and 512 W with the probability of 0.2, 0.8, and 0.2, respectively.  

Figure 4.4 is an example of a non-uniform heat load, which was generated by using this 

distribution.  We applied the optimization to a chosen population, in Baltimore, MD, for 100 

different heat load distributions.  While optimal results of HIYW did guarantee both individual 

and population thermal constraints in all cases, there is no significant changes in energy 

consumption.  However, OSFA ensured the population constraint for only 8 cases.  It didn’t 

reach feasible solutions for 92 cases under the constraint of 10% PPD.  Figure 4.5 shows the 

average of optimal energy consumption results of 100 different non-uniform cases, and that of 

uniform one. 
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Figure 4.4 – Example of non-uniform heat load 
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Figure 4.5 – Power results with non-uniform loads, and uniform load 

 

Occupants’ comfort has been improved while reducing energy consumption by optimized 

HIYW system.  While HIYW approach requires the use of all sensor network connectivity in 
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the building, it is not required in fuzzy logic approximation.  Reduction of sensor connectivity 

would not only reduce system complexity, but also cause modest decrease in energy savings 

relative to fully connected HIYW system.  Optimal results for lower internal resistances, and 

non-uniform heat loads are also encouraging to apply HIYW system in real world applications.  

There is always between trade-off between energy consumption and thermal comfort.  

However, while optimized HIYW make occupant reasonably satisfied within an acceptable 

temperature range, it also improves the cost of the system under the different thermal 

conditions such as outside temperature, desired temperatures of occupants, heat loads in 

offices, and resistance values of internal walls. 
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5 Appendix – MATLAB Codes 

5.1 Individual Dissatisfaction 

5.1.1 Predicted Mean Votes 

[5] 

%========================================================= 
%File name:     pmv_ashrae.m 
%Written by:    Seckin Ari 
%Description:   PMV computation in ASHRAE Standard 55-2004 
%               temp: Temperature (^oC) 
%               met: Metabolic rate (met) 
%               clo: Clothing (clo) 
%               v: Air velocity (m/s) 
%               rh: Relative humidity (%) 
%Date:          9/17/2004 
%========================================================= 
  
function PMVv=pmv_ashrae(temp,met,clo,v,rh) 
%1W=0.860421kcal/hr 
%1met=58.15W/m2; 1met=50.0335kcal/m2hr. 
  
  
%Clothing in m2K/W 
Icl=.155*clo; 
  
%Metabolic rate in W/m2 
M=met*58.15; 
  
  
if Icl<0.078, fcl=1+1.29*Icl;  
else fcl=1.05+0.645*Icl;  
end 
  
hcf=12.1*sqrt(v); 
  
     
ta=temp; 
taK=ta+273; 
trK=25+273; 
   
tclK=taK+(35.5-ta)./(3.5*(6.45*Icl+0.1)); 
  
p1=Icl*fcl; 
p2=p1*3.96; 
p3=p1*100; 
p4=p1*taK; 
  
  
p5=308.7-0.028*M+p2*(trK./100).^4; 
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xn=tclK./100; 
xf=xn; 
  
eps=0.00015; 
  
while(true) 
     
    xf=(xf+xn)./2; 
    hc=2.38*abs(100*xf-taK).^0.25; 
    i=find(hc<hcf); 
    hc(i)=hcf; 
     
    xn=(p5+p4.*hc-p2.*xf.^4)./(100+p3*hc); 
     
    if abs(xn-xf)<=eps, break end 
     
end 
  
tcl=100*xn-273; 
     
tmrt=ta; 
taK=ta+273; 
tmrtK=taK; 
  
ps=exp(16.6536-4030.183./(ta+235)); 
pa=ps.*rh*10; 
   
%heat loss diff. through skin 
HL1=3.05*.001*(5733-6.99*M-pa); 
%heat loss by sweating 
HL2=.42*(M-58.15); 
%latent respiration heat loss 
HL3=1.7e-5*M*(5867-pa); 
%dry respiration heat loss 
HL4=.0014*M*(34-ta); 
%heat loss by radiation 
HL5=3.96*fcl*(xn.^4-(tmrtK./100).^4); 
%heat loss by convection 
HL6=fcl*hc.*(tcl-ta); 
  
PMVv=(0.303*exp(-0.036*M)+0.028)*(M-HL1-HL2-HL3-HL4-HL5-HL6); 
  
i=find(PMVv>3); 
PMVv(i)=3; 
  
i=find(PMVv<-3); 
PMVv(i)=-3; 
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5.1.2 Optimal Settings for Individual Satisfaction Model – Monte Carlo Simulation 

%============================================== 
%File Name:     pmvbin4d_tanh.m 
%Written by:    Seckin Ari 
%Description:   Finding optimal settings for 
%               individual satisfaction model 
%Date:          12/20/2004 
%Modified:      02/07/2005 
%============================================= 
  
clear 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numofp=1000; 
  
temp=17:0.1:31; 
  
pmv=pmv_ashrae(temp,1,1,0.1,50); 
  
ppd=100-95*exp(-0.03353*pmv.^4-0.2179*pmv.^2);    
  
ltemp=length(temp); 
  
randn('seed',0); 
  
t=randn(numofp,1); 
dt=randn(numofp,1); 
  
% % mean & std range for tzero 
% meanvt=23.5:.1:25; 
meanvt=24; 
% meanvt=22:0.1:23; 
stdvt=1:.1:3; 
  
%mean & std range for slope 
meanvdt=2.5:.1:5; 
% meanvdt=3:0.1:4; 
stdvdt=0.1:0.1:1; 
  
lmt=length(meanvt); 
lst=length(stdvt); 
lmdt=length(meanvdt); 
lsdt=length(stdvdt); 
  
msebin=zeros(lmt,lst,lmdt,lsdt); 
  
for x=1:lmt 
    x  
    for k=1:lst 
         
        for l=1:lmdt 
        
            for m=1:lsdt 
        
         
                tzero=meanvt(x)+stdvt(k)*t; 
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                deltat=meanvdt(l)+stdvdt(m)*dt; 
  
                i=find(deltat<0.2); 
                deltat(i)=0.2; 
                 
                slope=1.5./deltat; 
                 
                 
                srate=zeros(numofp,ltemp); 
  
                for n=1:numofp 
  
                    votes(n,:)=slope(n)*(temp-tzero(n)); 
                                     
                  
                end %for end numofp 
                 
                arg=2.004*(abs(votes)-1.5);    
                srate=(1+tanh(arg))/2;                 
                 
              
                pds=100*mean(srate,1); 
  
                msebin(x,k,l,m)=mean((ppd-pds).^2); 
            end %for end of m std  
        end %for end of m mu  
    end %for end of tzero std 
end %for end of tzero mu 
  
save ppd4d_tanh_2.mat msebin 
 

5.2 Optimization 

5.2.1 Have It Your Way 

%===================================================== 
%File name:     optima_HIYW_100pop_15city.m 
%Written by:    Seckin Ari 
%Description:   Building optimization for HIYW case 
%Date:          09/15/2004 
%Modified:      06/02/2005 
%======================================================= 
% close all 
clear 
  
global optimalT 
  
%==== Initialization ===== 
% setting up matrices 
  
  
% generating people 
% satisfaction vote=slope*(T-T0) 
% T0 & slope - Gaussian distribution 
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 load 100populations.mat 
  
Rint=[0.1 0.125 10.5./[70:-10:30] 0.45:0.2:1.05]; 
Rint=[0.0001 0.0005 0.001 0.005 0.01 0.05 Rint]; 
  
lenres=length(Rint); 
  
city=[1 7 15]; 
  
  
Tout=46:-3:-47; 
lenT=length(Tout); 
  
% 
options=optimset('LargeScale','off','LineSearchType','cubicpoly','Display','iter','MaxIter',15000,'MaxFunEvals',1
50000,'TolFun',0.05,'TolCon',1e-3); 
options=optimset('LargeScale','off','LineSearchType','cubicpoly','Display','iter','MaxSQPIter',10000,'MaxIter',15
0000,'MaxFunEvals',1500000,'TolFun',0.1,'TolCon',0.05); 
  
for pop=1:100 
        
    tr=(1.5+atanh(-0.6)/2.004)./slope(pop,:);%trange @ srate=0.2 
    t0=tzero(pop,:); 
     
    for citynum=city 
         
        [pop citynum] 
  
        optimalT_HIYW=zeros(lenres,49,32); 
        optimalE_HIYW=zeros(lenres,32); 
  
        for indR=1:lenres 
         
            Init_HIYW 
  
            for bin=1:32 
                
               if binhoursWORK(citynum,bin)~=0 
             
                    [t,opte,exitflag(indR,bin),output]=fmincon(@t10_515_HIYW,t0,[],[],[],[],t0-
tr,t0+tr,@ppdcon,options,Tout(bin),citynum,t0,slope(pop,:)); 
                     
                    optimalE_HIYW(indR,bin)=opte; 
                    optimalT_HIYW(indR,:,bin)=t; 
                     
               end%if 
                 
            end%bin 
        end%indR 
         
%         s=strcat('optimalET_HIYW_pop_',num2str(pop),'_city_',num2str(citynum),'.mat'); 
%         save(s,'optimalE_HIYW','optimalT_HIYW','exitflag'); 
        s=strcat('optimalET_HIYW_VL_pop_',num2str(pop),'_city_',num2str(citynum),'.mat'); 
        save(s,'optimalE_HIYW','optimalT_HIYW','exitflag'); 
  
    end%citynum 
end%pop 
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5.2.2 One Size Fits All 

%===================================================== 
%File name:     optima_3TFA_100pop_15city.m 
%Written by:    Seckin Ari 
%Description:   Building optimization for OSFA 
%Date:          09/15/2004 
%Modified:      06/02/2005 
%======================================================= 
% close all 
clear 
  
global optimalT 
global indHL 
  
  
  
%==== Initialization ===== 
% setting up matrices 
  
  
% generating people 
% satisfaction vote=slope*(T-T0) 
% T0 & slope - Gaussian distribution 
  
load 100populations.mat 
load binhoursWORK.mat 
  
Rint=[0.1 0.125 10.5./[70:-10:30] 0.45:0.2:1.05]; 
Rint=[0.0001 0.0005 0.001 0.005 0.01 0.05 Rint]; 
lenres=length(Rint); 
  
citynum=3; 
  
  
Tout=46:-3:-47; 
lenT=length(Tout); 
  
city=[1 7 15]; 
  
  
% 
options=optimset('LargeScale','off','LineSearchType','cubicpoly','Display','iter','MaxIter',15000,'MaxFunEvals',1
50000,'TolFun',0.05,'TolCon',1e-3); 
options=optimset('LargeScale','off','LineSearchType','cubicpoly','Display','iter','MaxIter',15000,'MaxFunEvals',1
50000,'TolFun',0.1,'TolCon',1e-3,'FunValCheck','on'); 
  
    
for pop=1:100 
        
    % [tzero(pop,:) slope(pop,:)]=genpeople(n,m);  
    tr=(1.5+atanh(-0.6)/2.004)./slope(pop,:);%trange @ srate=0.2 
    t0=tzero(pop,:); 
     
    for citynum=city 
         
        [pop citynum] 
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        optimalT_3TFA=zeros(lenres,32); 
        optimalE_3TFA=zeros(lenres,32); 
  
        for indR=lenres:lenres 
  
            Init_3TFA 
  
            for bin=1:32 
                
               if binhoursWORK(citynum,bin)~=0 
             
                    
[t,opte,exitflag(indR,bin),output]=fmincon(@t9_515_3TFA,24,[],[],[],[],15,30,@ppdcon,options,Tout(bin),cityn
um,t0,slope(pop,:)); 
  
                    optimalE_3TFA(indR,bin)=opte; 
                    optimalT_3TFA(indR,bin)=t; 
                     
                                                 
               end%if 
                 
            end%bin 
        end%indR 
         
%         s=strcat('optimalET_3TFA_pop_',num2str(pop),'_city_',num2str(citynum),'.mat'); 
%         save(s,'optimalE_3TFA','optimalT_3TFA','exitflag'); 
%  
%         s=strcat('optimalET_3TFA_VL_pop_',num2str(pop),'_city_',num2str(citynum),'.mat'); 
%         save(s,'optimalE_3TFA','optimalT_3TFA','exitflag'); 
  
     
    end%citynum 
end%pop 
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Nomenclature 

ρ 
 Density kg/m3 

k  Thermal conductivity W/mK 
u 

 velocity m/s 
h 

 heat transfer coefficient W/m2K 
q&   Heat flux W/ m2 
m&   Mass flow rate of conditioning air kg/s 
C  Combined mass flow rate and specific heat J/sK 
F  View Factor - 
L  Linkage matrix - 
R  Thermal resistance of zonal interface K/W 
U  Overall heat transfer coefficient W/K 
Q&   Energy  W 
T   Temperature °C 

*T   Desired room temperature °C 
s

iT   Supply air temperature to room i °C 
e

iT   Exhaust air temperature from room i °C 
o

iT   Operative temperature of person in room i °C 
a

iT   Mean air temperature around person in room i °C 
r

iT   Mean radiant temperature in room i °C 
c

iT   Average air temperature around wall in room i °C 
iw
jT   The j Wall temperature of room i °C 

    
Subscripts and Superscripts   

adv  Advection  
cond  Conduction  
gen  Generation  
HVAC  HVAC system  
cl  cloth  
c  convection  
r  radiation  
w  wall  
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1 Introduction 

1.1 Background and Research Objective 

In recent years, there has been interest in the modeling of the energy usage of a building with an 

occupant-controlled distributed environmental control system. For example, Cosden (2005) 

modeled energy consumption with a new method developed using a temperature-bin-based 

lumped-parameter approach. In this model, which is based on the analogy to an electrical circuit 

network, each micro-environment in the building is treated as a node in a circuit, and the heat 

paths between the zones are modeled as resistors. The air in each zone is assumed to be well-

mixed, and hence at a uniform temperature. Energy fluxes between zones are calculated based 

on the thermal resistance between neighboring zones. Unlike most generally-available building 

energy models (such as TRNSYS), Cosden’s model is not time-dependant and does not account 

for the transient inertia of building environments.  Even though the energy consumption at any 

particular moment may not be correct in the thermal-circuit model, Cosden showed his model to 

predict yearly energy consumption within approximately 0.6% of an equivalent transient 

simulation, while executing in one six-hundredth of the time.  

 

However, Cosden made several simplifying assumptions in his model that somewhat limits its 

utility.  For example, Cosden’s well-mixed approximation makes it only valid for traditional 

overhead ventilation systems.  Modern systems, such as underfloor air distribution (UFAD) 

systems in which temperature stratification is an essential ingredient, cannot be adequately 

modeled using the well-mixed approach.  Additionally, the well-mixed assumption cannot 

capture the fact that occupants are located close to the floor, and so only the temperature in the 

lower part of the room contributes to the occupant’s comfort. 
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Another assumption of the original thermal circuit model is that there is no air flow between 

zones in the system, and hence energy flux is only by conduction/convection and not by 

advection.  This is appropriate for buildings composed of offices, but is not appropriate of those 

composed of workstations divided by partitions and connected by corridors. 

 

Therefore, the objective of this research is to extend the thermal-circuit model in three 

significant ways: (1) to relax the “office wall” requirement by allowing energy to flow between 

zones via advection as well as conduction,  (2) to improve the comfort model to account both 

for radiation as well as convection heat transfer, and (3) to support ventilation systems in which 

the temperature is stratified, such as in underfloor air distribution systems. 

 

The approach to be followed is to perform detailed computational fluid dynamics (CFD) 

calculations for portions of a building with partitions and adjoining corridors. Through 

parametric studied, factors such as supply temperature differences and configuration changes will 

be studied to determine which of these has the strongest influence on the occupants’ 

temperatures, and hence comfort.  Also, the simulation results will provide data for analysis of 

the air stratification behavior due to thermal buoyancy.   Subsequently, the temperature profile of 

each zone will be extracted from CFD results and a simple model will be constructed that can be 

incorporated into a new thermal-circuit model.  This new physics will be incorporated in such a 

way that the new model will remain linear and will be quickly solvable for use in a control-system 

optimization process.   
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1.2 Road Map 

In this report, first we will give a short introduction on the underfloor air distribution (UFAD) 

systems in Section 2.1. A brief summary of the CFD method and code that we used in this 

research are illustrated in the following section. In Section 2.3, we will introduce the baseline 

office model, consisting of two cubicles and an adjoining corridor, and all the features of the 

model will be described in detail. The turbulence modeling of the CFD cases is presented in 

Section 2.4, because turbulence modeling and near wall treatment is a relatively important part in 

CFD modeling.   In Chapter 3, the baseline case experiment will be explained in 3.1 and the 

computed results will be shown in Section 3.2 and 3.3.  We will then discuss the method that we 

used to modify the original thermal circuit model in Chapter 4. The idea of personal comfort and 

thermal stratification will be introduced in Section 4.1 and Section 4.2 respectively. The matrix 

formulation and the model implementation will be shown in later sections. Results can be found 

in Section 4.5, and the comparisons were made between the modified and the original thermal 

circuit model. Finally, the report will end with some conclusions and a listing of the newly-

modified thermal-circuit model.      
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2  Model Development 

This chapter describes the various components that are assembled into the computational 

model.  It begins by describing the physical problem in general, then discusses the computational 

tools, and finally combines them into the actual computational model that is used. 

 

2.1 Underfloor Air Distribution Systems                                 

An Underfloor air distribution (UFAD) system is an innovative ventilation method that uses the 

underfloor plenum below a raised floor to deliver heating and air conditioning to offices and 

commercial buildings. The market for UFAD technology is expanding in North America 

because of the benefits that it offers over conventional overhead air distribution. 

Originally introduced in the 1950s in spaces having high heat loads (e.g., computer rooms, 

control centers, and laboratories), underfloor air distribution has proven to be the most effective 

method to deliver conditioned air to occupied zones. Thermal comfort of occupants can be 

improved by allowing individual control of their local thermal environment. (Bauman 2003) 

Improvements in ventilation and indoor air quality at the breathing level can also be expected by 

delivering the fresh supply air at floor level or near the occupant.  In addition, Bauman (Bauman 

2003) reports UFAD also reduces energy usage by reducing total air volume and static pressure 

requirements, reduces life-cycle building costs, reduces floor-to-floor height in new construction, 

and improves productivity and health. 
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Figure 1.1 Underfloor air distribution systems with diffusers throw below the stratification 
height (Bauman) 

 

Figure 1.1 shows a typical underfloor room air distribution model. The primary difference 

between underfloor air distribution systems and displacement ventilation (DV) systems is that 

UFAD systems have higher velocity inlet air through smaller outlets and allow personal control 

for local air supply conditions.  

 

Bauman (2003) has shown that there are two characteristic heights, the throw height (TH) and 

the stratification height (SH), which divide the room into three zones.  The Lower (mixed) Zone 

is between the floor and the TH. Air in this zone is relatively well mixed. The supply air reaches 

a terminal velocity of around 0.25m/s at the upper boundary of this layer. The vertical 

temperature gradient is reduced in this zone due to greater mixing compared to DV systems. 

The throw height (TH) is largely dependent on the throw of the supply outlets and the ratio of 

the space heat load to the supply airflow. The Middle (Stratified) Zone is a transition layer 

between TH and SH. The air in this region is entirely driven by the rising thermal plume around 

heat sources in the room. The vertical temperature gradient tends to be greatest in this stratified 
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zone. This middle zone disappears if TH is higher than SH. The Upper (mixed) Zone is 

comprised of warm air accumulated by the rising heat plumes. Air in this region is also relatively 

well mixed because of the high velocity thermal plumes entering through the lower boundary. 

The upper mixed zone disappears if the supply air flow rate is equal to or greater than the 

volume of the heat plumes generated. In that case, it can be modeled as a two-zone model, 

composed of lower zone and the stratified zone.   

 

2.2 CFD Code--- Airpak-FLUENT              

The computational fluid dynamics (CFD) software used in this research, Airpak, is a popular 

design tool for assessing indoor air quality, building airflow and thermal comfort, which is 

distributed as a companion to the FLUENT system.  As in all CFD simulations, Airpak consists 

of four main phases: model definition, mesh generation, simulation and post-processing. The 

basic structure of the program is shown in Figure 1.2.  
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Figure 1.2 Basic Program Structure of Airpak (Airpak Manual 2002) 

 
 

At first, the user can build a model selecting from the predefined objects, including rooms, 

people, blocks, fans, partitions, vents, openings, sources, walls, sources, resistances, ducts etc. 

The object-based procedure can save considerable time in constructing the model. The model 

can also be imported from other design tools such as CAD/CAE packages.  
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After defining all the boundary conditions for the computational model, Airpak will generate a 

mesh automatically based on the user-specified mesh parameters. It provides full user control of 

meshing parameters and mesh deployment.  

 

Before running simulations, users also need to define the physical model by choosing a 

turbulence model, a radiation model, a species transport model, and steady-state or transient 

analyses etc. In the solver setup, a discretization scheme, under-relaxation factors and 

convergence criteria can be specified. Some advanced setups can be done through editing the 

case file directly in text file before running the simulation.  

 

In the simulation phase, five governing partial differential equations will be solved together with 

equations that model turbulence. The governing equations are the continuity equation: 
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where k is the molecular conductivity, tk is the conductivity due to turbulence transport 

( ttpt ck Prμ= ), and hS  is the source term that includes all the volumetric heat sources.  

For solid regions, the energy equation is written as 
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where "q  is the volumetric heat source. 

 

As a default, Airpak uses a first-order algorithm while solving the momentum equations, in space 

(upwind method) and time. The first-order scheme gives a relatively quick and reasonably 

accurate solution. The second-order scheme is also available for more accurate solutions, but is 

recommended to be used based on converged first order solutions. The SIMPLE pressure-

velocity coupling algorithm is applied and the discretization scheme for the pressure was body 

force weighted. In this research, first-order scheme and SIMPLE algorithm were used in all the 

simulations. Stable convergent solutions were achieved by setting the under-relaxation factor to 

0.7 for pressure and 0.2 for momentum for the cases studied in this report. 

 

In the post-processing phase, Airpak includes a full-function 3D object-based post-processor, 

which allows the user to generate visualizations of the flow field and reports. Users can employ a 

variety of methods in the post-processing, including vector plots and contour plots, object face 

plots, animation etc. to present air, temperature, contaminant distribution and other parameters. 

Finally it can generate a report customized to the user’s specifications. Post-processing can also 

be done in FLUENT, which provides more flexible capabilities of reporting. 
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2.3 Baseline Model Description     

2.3.1 Two Cubicle Model 

Many commercial buildings consist of different types of cubicles and corridors. The office space 

is divided to separate workstations by partition walls, and then connected by corridors. A typical 

office suite layout is shown in Figure 2.1. There are different spatial combinations of two 

cubicles in a typical office building. Six typical combinations of the two adjacent cubicles can be 

found in a simplified building layout, shown as in Figure 2.2. In each mode (combination), the 

air flow and energy flux between the two cubicles will have different kind of behavior according 

to the configuration of the cubicles.  

 

 

Figure 2.1 A Typical Office Suite Layout 
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Figure 2.2 A Simplified Typical Office Suite Layout 

 

For this project, the baseline case is Mode A.  We will assume that the cubicles repeat themselves 

symmetrically at each boundary, i.e. the cubicles next to the pair being represented are exactly 

identical to it in geometry and boundary conditions.   

 

The specific geometry of the two-cubicle-model used throughout this study is shown in Figures 

2.3 to 2.5 

Mode A Mode E 

Mode B 

Mode C 

Mode D 

Mode F 
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Figure 2.3 Mod A (Top View)                                         Figure 2.4 Mod A (Side View) 

 
 
 
 

 

Figure 2.5 Two-cubicle-model of mod A (Plain View) 

 

 

The model for each cubicle incorporates an L-shaped desk, an occupant, a computer, a desk 

lamp and panel partitions, which represents a typical office setup in North America. To simplify 
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the CFD model, the seated occupants were replaced by heated blocks, with fixed internal heat 

generation. At the meantime, simple blocks were also used to represent the computers (CPU box 

and monitor) and the desk lamps. 

 

2.3.2 Internal Heat Generation             

In a typical office room or a cubicle, there is a human occupant doing moderate office work with 

a computer and a lamp. To define these internal heat sources inside each zone, the specific heat 

gain values can be obtained from the ASHRAE handbook of Fundamentals (2001). For a 

sedentary office occupant with a skin surface area of 1.8m², the sensible heat is 75W, in which 

38~58% is radiant heat. (Ch29, ASHRAE handbook 2001) The latent heat is not accounted for 

because humidity is not included in our model. As for the computer, it generates an average of 

55W from CPU box and 55W from the monitor. Our computer model combines these two 

components and is simplified by a single block, 5cm above the desk, with total power 110W.  In 

our model , the back and top of the computer cube is a “hot” surface, whereas the others are 

“cold”..  The heat generated from the hot surface is about 2.5 times greater than the heat 

generated from the cold surface (Abanto et al. 2004). A 75W desk lamp is also included in the 

model. Therefore, the total internal heat generation in each office (cubicle) is 260W.  

 

2.3.3 Walls and Partitions                     

For this project, it is not of interest to model heat transfer between offices on different floors. 

Therefore, adiabatic conditions were chosen for the floor and the ceiling. Partitions, which are 

1.75m high, divide the working space into cubicles. The thermal resistance of the interior wall 

partition is 0.392m²K/W, which agrees with Cosden’s thermal circuit model (Cosden 2005).  
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Further, it is assumed that the two cubicles are adjacent to other cubicles and connected by a 

corridor. The space above the partitions is open. Symmetric boundary condition are imposed on 

the boundary surfaces that connecting the open spaces.  For this boundary condition there is no 

flow across the boundary and no scalar flux across the boundary. 

 

2.3.4 Floor Diffusers 

UFAD systems have a larger number of supply diffusers compared to standard overhead 

systems (http://www.cbe.berkeley.edu/underfloorair/diffusers.htm). Many of these diffusers are 

in close proximity to the occupants, delivering a smaller amount of air than traditional ceiling 

diffusers. The swirl diffuser is the most commonly installed type of diffuser in UFAD systems. 

There is a wider variety of swirl diffusers available than any other type of diffusers. Figure 2.6 

gives some examples of currently available underfloor swirl diffusers manufactured by Carrier. 

 

 

Figure 2.6 Swirl Diffusers (Carrier) 

 
 

Rapid mixing of supply air with room air up to the throw height will be caused by the swirling 

pattern of the discharged flow. Generally, the swirl diffusers will be placed in the interior zones, 

as shown in Figure 2.7, allowing occupants to have some control of their local environment. The 

volume, direction, and sometimes temperature of the incoming air supply can be adjusted by 

occupants. The swirl diffusers can be installed as passive diffusers (with pressurized underfloor 

plenums) or active diffusers (fan-driven). In this simulation, active diffusers are used.  
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Figure 2.7 Floor Diffusers and a typical layout (Bauman’s Case Study) 

 
 

 

2.3.5 Airflow rate and Temperature     

The total volume of one “zone”, including the cubicle and the corresponding corridor, is 1.83m 

x 3.04m x 2.74m (6ft x 10ft x 9ft), or about 15.24m³ (540 ft³). The air change rate for each zone 

was chosen to be 6 air changes per hour (6ACH), which is typical of office ventilation systems. 

(Awbi, 2003) Therefore for the baseline case, we have the total airflow rate of 0.0254m³/s 

(54cfm).  

 

Because air is supplied directly into the occupied zone, the minimum supply air temperature 

should not be less than 16ºC~18ºC (Bauman 2003). Currently, other supplies of air to offices for 

personal control allow temperatures to vary over a wider range ---- up to 13ºF (7ºC) for desktop 

outlets and 9ºF (5ºC) for floor diffusers (Tsuzuki et al. 1999). For the purpose of this study, we 

extended the range for the floor diffuser to 8ºC (16~24ºC). 

 

The exhaust vent is located in the center of the ceiling for each cubicle. This location represents 

a typical exhaust of a real individual office cubicle. The pressure at the vent is same as ambient.  

Floor diffuser Floor diffuser Floor diffusers 
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The outside temperature of the vent is equal to the ambient temperature 22°C (needed in cases 

where the is backflow out of the vent). 

 

2.3.6 Radiation                 

In addition to conduction and convection, radiation heat transfer also needs to be taken into 

account. It is said that about 38~58% of sensible heat from the occupant is radiant heat 

(ASHRAE handbook 2001). Unlike conduction and convection, radiation does not require a 

medium for transmission. Also, for most situations, conductive and convective heat transfer 

rates are linearly proportional to temperature difference, while radiant heat transfer is 

proportional to differences in temperature raised to the fourth power.  The heat transfer rate is 

defined as (Fluent user’s guide 2003): 

 

                                               )( 44
remotesurface TTeFq −= σ                                                        (2-6) 

 

where surfaceT  is the temperature of the object surface, remoteT  is the temperature of the surface to 

which the object radiates heat, F is the view factor indicating the fraction of energy that is 

intercepted by the surface of the object, e is the emissivity of the surface of the object and σ  is 

the Stefan-Boltzmann constant ( 12481067.5 −−−−×= smJKσ ). 

 

Two radiation models are available in Airpak: the discrete ordinates (DO) radiation model and 

the surface-to-surface (S2S) radiation model. The latter provides an economical way to account 

for radiation in most applications, but its accuracy greatly depends on the view factor calculation. 

Airpak calculates the view factors automatically based on a very coarse mesh after the model is 
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set up and carry those through the whole calculation. The DO model, on the other hand, solves 

the radiative transfer equation (RTE) for a finite number of discrete solid angles, each associated 

with a vector direction fixed in the global Cartesian system. It utilizes the current grid to do 

iterative calculation, in a similar manner to the continuity, momentum and energy equations. In 

order to get more accurate results, we choose the DO radiation model in our radiation 

calculation. A comparison of the results from S2S model and DO model will be discussed in 

Chapter 3.2.       

 

2.3.7 Turbulence modeling                             

Since the majority of indoor air flows are turbulent, it is necessary to include some representation 

of turbulence in computational models of flow processes. There are no exact solutions for the 

Navier-Stokes equations for turbulent flows. Numerical solutions can be obtained by direct 

numerical simulations (DNS) (Moin et al. 1998), in which all temporal and spatial scales are 

solved accurately, but at an extraordinarily high computational cost. Since it is unrealistic to 

simulate the detailed fluctuations, the transient governing equations can be time-averaged to 

remove the small scale and high frequency fluctuations. The classical turbulence models are 

based on time-averaged Reynolds Navier-Stokes equations. They include mixing length model 

(zero equation model), k-ε model (two-equation model), Reynolds stress equation model as well 

as others. Besides DNS and the Reynolds-Averaged approach, large eddy simulation (LES) 

approach can serve as a compromise. It directly solves the large energy-containing spatial scales 

(like DNS), while modeling the influence of small scale turbulence as well (like Reynolds-

Average) (Moin 1997). 
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2.3.7.1 The standard k-ε model 

Of the conventional turbulence models, the k-ε model, proposed by Launder and Spalding 

(1974), is the most widely used and validated semi-empirical model based on model transport 

equations for the turbulent kinetic energy (k) and its dissipation rate (ε). It solves the two 

separate transport equations simultaneously which allow the turbulent velocity and length scales 

to be independently determined. The turbulent viscosity, μt , is computed by combining k and ε 

as follows:  

                                                       
ε

ρμ μ

2kCt =  ,                                                          (2-7) 

where μC  is an empirical constant specified in the turbulence model, 0.09 (standard k- ε model) 

and 0.0845 (RNG k- ε model) as set by FLUENT. 
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In these Equations, Gk is the generation of turbulence kinetic energy due to the mean velocity 

gradient. Gb represents the generation of turbulence kinetic energy due to buoyancy. YM   

accounts for the contribution of the fluctuating dilatation in compressible turbulence to the 

overall dissipation rate. C1ε, C2ε and C3ε are constants. σk and σε are the turbulence Prandtl 

numbers for k and ε, respectively. Sk and Sε are source terms. (Fluent user’s guide 2003) 
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2.3.7.2 Initialize k-ε model 

The turbulence intensity of the inlet boundary condition is defined as 10%, a typical value used 

for indoor office environment. The initial values for k and ε are then calculated using equations: 

                                                             ( )2
2
3

avgIuk =                                                   (2-10) 

and                                                         
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where I is the turbulence intensity. The turbulence length scale is defined as l=0.07L (L is the 

hydraulic diameter of the duct) (Nielsen 2003).    

 

2.3.7.3 Near-wall treatment 

Some turbulence models, such as the k-ε model, is primarily valid only for fully turbulent flows, 

which means they assumed the molecular viscosity is negligible. Therefore, attention should be 

paid to the wall-bounded flows and how to modify these models to make them accurate in that 

region. Numerous experiments have shown that the near-wall region can be subdivided into 

three main layers, as illustrated in Figure 2.8. The layer closest to the wall is called the ‘viscous 

sublayer’ in which the molecular viscosity dominates momentum, heat and mass transfer. The 

buffer layer (blending region) connects the viscous sublayer and the outer layer. In the fully-

turbulent layer, turbulence dominates momentum, heat and mass transfer and it is known as the 

‘log-law region’.  

 

Two models are included in Airpak to simulate flows in the near-wall region: the Wall Functions 

model and the Near-Wall model. The wall functions are used to bridge the molecular viscosity-

affected region between the fully-turbulent region and the wall, typically used for most high-

Reynolds-number flows. The near-wall model can resolve viscosity-affected region by solving a 
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modified turbulence model all the way down to the wall with a very fine mesh near the wall. For 

the flow we are dealing with, the Reynolds number is relatively low. Therefore it is 

recommended that the near-wall model approach will provide more accurate solutions (Fluent 

user’s guide 2003). 

 

 

Figure 2.8 subdivisions of the Near-wall Region (FLUENT manual) 

 

Low-Reynolds number models have been applied for plenty of indoor airflow modeling (Chen 

1995, Awbi 1998). In low-Reynolds number modeling (Launder and Spalding 1974) grid points 

are placed within the boundary layer, including the laminar region. As a result, some of the 

empirical constants will vary with the local turbulence Reynolds number. In the early 1900’s, 

Prandtl first proposed a two-layer model to model the near wall region. But in the computational 

schemes, sufficiently fine mesh should be placed near walls, which will dramatically increase 
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computational burden. Fluent (Fluent user’s guide 2003) offered a method to combine the 

traditional two-layer model with enhanced wall functions (Kader 1993).  

 

When the enhanced wall treatment is employed, +y  , defined as μρ τ /yuy =+ , at the wall-

adjacent cell should be less than 4~5 to enable the cell to be within the viscous sublayer.  Also, at 

least 10 cells should be placed within the viscosity-affected near-wall layer to resolve turbulent 

quantities in this region (Fluent user’s guide 2003). In this research, +y are less than 3 around the 

person surfaces.               
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3 Baseline Cases and Computed Results 

This chapter describes the three-dimensional computational simulations that were performed for 

two-cubicle-with-corridor configurations. 

 

3.1 Design of Experiment 

The purpose of the simulations is to test the degree of coupling in the relationship between the 

personal temperatures in these two cubicles. In other words, if personal air conditioning is 

implemented in each cubicle, how much does the air temperature in one cubicle affect that of 

the other cubicle?  The design of the experiment is shown in Table 3.1 below: 

 

Ts1 (°C) Ts2 (°C) Vs1 (ACH) Vs2 (ACH)

16 16 6 6 

20 16 6 6 

24 16 6 6 

 

Table 3.1 Design of the Experiment 

 

For a given mode (combination of two cubicles), the supply temperature (Ts) and volume flow 

(Vs) rate of the two cubicles are adjustable parameters. For the temperature control cases, the 

ventilation rate of each zone will be fixed at 6 ACH. The supply temperature of zone 1 varies 

from 16°C to 24°C with constant supply temperature of 16°C in zone 2. It can be expected that 

if the two zones are perfectly decoupled, the person temperature in zone 1(Tp1) will increase as 
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Ts1 increases, while the person temperature in zone 2 (Tp2) will remain constant, since there is 

no change for Ts2. On the contrary, if the two zones are coupled, we would expect that Tp2 will 

increase due to the increase of Ts1, and Tp1 will not increase as much as the ideally decoupled 

case because of the effect of a lower Ts2. Figure 3.1 and Figure 3.2 show the plots of the 

correlation of Tp and Ts with respect to degree of coupling of the two zones. The more the two 

zones coupled, the closer Tp1 and Tp2 are on the plots.  

 

       

Figure 3.1 2-zones perfectly decoupled case        Figure 3.2 2-zones coupled case                                  

 

3.2 Baseline Cases Results   

3.2.1 Middle Full Wall Insulated (FWI) 

Firstly, a full wall, from front to back and from floor to ceiling, was put in to separate the two 

zones, as shown in Figure 3.3. Although it is not realistic in real life, it is the good beginning to 

test the model at the extreme perfectly decoupled situation. When the middle full wall is 

insulated, the perfectly decoupled behavior of the two zones will be evident and a plot similar to 

Figure 3.1 would be expected.  
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Figure 3.3 Mode A with full wall in middle SW1 

 

The swirl direction for the two floor supplies was chosen to be symmetric and the direction 

shown in Figure 3.3 above is defined as Swirl Direction 1 (SW1).  
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Figure 3.4 The effect on Tp in two cubicles by adjusting Ts1 (FWI) 

 

Figure 3.4 shows the change of the personal surface temperature in the two zones by adjusting 

the supply temperature in zone 1 while maintaining the supply temperature in zone 2 as a 

constant. The personal surface temperature was calculated based on an area-weighted average 

temperature on the surface of each person, post-processed in FLUENT. Two radiation models 

were used: the Surface-to-Surface (S2S) model and the Discrete Ordinates (DO) model. The 

results from the DO model are as expected: Tp1 increases as Ts1 rises and Tp2 remains constant 

due to the unchanging Ts2. Also, it indicates that Tp1 will increase the same amount as Ts1 does, 

for the DO model. On the other hand, the results from the S2S model illustrate an increase of 

Tp2 with Ts1, which is physically wrong. Furthermore Tp1 doesn’t increase as much as Ts1. 

Perfectly decoupled behavior is not present when using S2S radiation model. The possible cause 
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of the problem for the S2S model is the way Airpak calculates the view factors, as discussed 

previously. Based on these results, DO model is chosen to calculate radiation for all further 

simulations.  

 

3.2.2 Middle Full Wall with Resistance (FWR) 

The next item of interest is how the conduction through the middle wall will affect the degree of 

coupling of the two zones. A thermal resistance of 0.392m²K/W, a typical thermal resistance for 

the interior wall, was chosen for the middle full wall (Cosden 2005).  
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Figure 3.5 The effect on Tp in two cubicles by adjusting Ts1 (FWR vs. FWI) 
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Figure 3.5 shows the comparison between the FWI and the FWR case. It can be found that for 

the case FWR, Tp1 drops a little bit while Tp2 increases almost the same amount compared to 

the FWI case as Ts1 increases. The increase of Tp2 for the FWR case indicates that Ts1 has 

influenced it through by conduction heat transfer through the middle wall.  

 

3.2.3 Partitions with Cubicle Doors (PWD) 

The results above indicated that by putting allowing heat transfer through the middle wall causes 

the personal temperature of the two cubicles to be slightly coupled. Here, instead of using a full 

wall from front to back and from floor to ceiling, a typical partition with the height of 1.75m was 

inserted to separate the two working spaces. If a partial height partition is chosen as a divider 

between the cubicles, airflow interaction will occur over the partition and the energy flux 

between the two cubicles will consist of not only conduction but also advection. It is of interest 

to test the effects of the energy flow in the open space above the partial height partition. The set 

up of the model is shown in Figure 3.6. Doors were put on the cubicle openings to prevent 

advection through the corridor.  

 

Figure 3.6 Mode A partition with doors SW1 
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Figure 3.7 The effect on Tp in two cubicles by adjusting Ts1 (PWD) 

 

The results of the PWD cases are plotted on Figure 3.7, compared with the results from the 

previous full wall configurations. The Tp1 and Tp2 profiles of the PWD cases have very similar 

behavior as that of the FWR case, but the difference of Tp is slightly smaller, indicating an 

advection energy flux over the top of the partition that has an effect that is comparable to the 

conduction through the full middle wall.  The other thing need to be noticed is that for the case 

with same supply temperatures at 16ºC, the PWD case causes Tp to be lower than all other cases. 

That is expected because by closing cubicle doors, each cubicle will receive more cooling since 

no air leaves from it to the corridor.  
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3.2.4 Partition with openings SW1 

After testing the model with the middle wall extending from floor to ceiling and the case with 

doors on cubicle openings, the next scenario of interest is that with a partial height divider 

between the two cubicles and with the allowance of flow in the corridor. Based on the model 

described in Chapter 2.4, the doors to the corridor were eliminated, allowing flow in the corridor. 

Figure 3.8 shows the configuration of the model with a partition divider. 

 

   

Figure 3.8 Mode A with partitions SW1 

 

It can be expected that the two zones would become more coupled due to the open space above 

the middle partition, as well as the flow through the corridor. The results from these simulations 

are shown in Figure 3.9. Strong coupling behavior of the personal temperature in the two zones 

is illustrated by the decreased slope of the Tp1 profile and the increased slope of the Tp2 profile.  

In the extreme case, which is an 8°C difference in the supply temperature, the personal 

temperature in the two zones show only a 1.8°C difference. This result clearly shows there is 

advective heat transfer through the corridor and through the open space above the middle 
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partition and the corridor flow has the dominant effect on the coupling behavior of the personal 

temperature in the two cubicles.  
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Figure 3.9 The effect on Tp in two cubicles by adjusting Ts1 (Partition SW1) 

 

Figure 3.10 shows the particle trace from one of the supply diffuser, swirl diffuser 1 (SD1) with 

Ts1 at 24°C. Figure 3.11 shows a particle trace from the other swirl diffuser, SD2, with Ts2 at 

16°C. In Figure 3.10, a significant portion of the air flow can be observed leaving cubicle 1 

entering cubicle 2 through the upper part of the corridor. It is clearer in Figure 3.11 that after 

falls down from the ‘fountain’, the cold air seeps to the other cubicle through the lower part of 

the corridor. These results are unexpected but explainable: the difference in supply temperature 

creates a pressure difference in the two zones due to buoyancy and hence drives the flows in the 

corridor.   
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                        Top View                                     Side View 

 

 

Plain View 

Figure 3.10 Particle trace from Swirl Diffuser 1 (Ts1=24°C) 

 

Cubicle 1 Cubicle 1Cubicle 2 Cubicle 2 
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                        Top View                                     Side View 

 

 

Plain View 

Figure 3.11 Particle trace from Swirl Diffuser 2 (Ts2=16°C) 

 

3.2.5 Partition with openings SW2 

It is possible that the swirl directions of the floor diffusers can affect the coupling behavior of 

the two cubicles. Therefore, another swirl direction was applied, shown as in Figure 3.12.  

 

Cubicle 1 Cubicle 1Cubicle 2 Cubicle 2 
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Figure 3.12 Swirl Directions of Mode A 

The symmetric features of the diffusers were still preserved. The new swirl direction is called 

SW2. The results of the SW2 case is shown in Figure 3.13, compared with previous results.  
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Figure 3.13 The effect on Tp in two cubicles by adjusting Ts1 (Partition SW2) 

SW 2SW 1 



Report No. DE-FG02-03ER63694-F1 
 

 39

 

A very slight difference between the two swirl directions can be observed on the plot. Therefore 

for this configuration, swirl direction only changes the flow pattern without changing the degree 

of coupling of the two cubicles.  

 

3.3 Other Modes and Comparisons 

The results presented to this point are for a cubicle configuration referred to as mode A (see 

Figure 3.14). Since there are many other combination of the two cubicles (other modes), it is also 

important to look into the flow pattern and the coupling behavior of those modes. Figure 3.14 

shows all the configuration of the modes. The small arrows illustrate the swirl directions. 

Symmetric swirl directions are presented in all modes except for Mode D and the asymmetrical 

Mode F.  

Figure 3.14 Configuration of All the modes 

 

Only the extreme cases (Ts1=24°C and Ts2=16°C) are of interest since all the previous results 

show essentially linear behavior of Tp1 and Tp2 with respect to Ts1. Simulations were 

performed based on these other modes (Mode B, C, D, E, F) for the cases with partition 

openings facing the corridor and the case with partitions having doors. The personal 

Mode A Mode B Mode C Mode D Mode E Mode F
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temperature difference of the two occupants is of interest and hence the results are compared 

based on ∆Tp for all the different modes.  

 

Figure 3.15 Personal Temp Differences in Two Zones for Different Modes (24°C16°C) 

 

Figure 3.15 shows the comparison of all the modes for the ‘partitions with opening’ and 

‘partitions with doors’ cases. For the partitions with openings to the corridor cases, ∆Tp of all 

modes range from 1°C to 1.8°C, except Mode B, which has no corridor connecting the two 

cubicles. These values are relatively small compared to the supply temperature difference (8°C). 

However if the openings to the corridor are blocked by putting doors on them, ∆Tps 

dramatically increase to around 5°C and hence improved decoupled behavior of the two cubicles 

is evident.  
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4 Methodology of the Modified Thermal Circuit Model 

The previous chapter described the CFD models that were performed for two-cubicle-with-

corridor configurations.  Those computational results will now be applied to a simplified 

thermal-circuit model that is suitable for building optimization studies. 

4.1 Thermal Environment of Human Occupant 

Research has been done to calculate the heat exchange between people and the environment 

quantitatively (Fanger 1967, 1970; Rapp and Gagge 1967). The thermal exchange of the human 

body with the environment represents a combination of the sensible heat loss and the 

evaporative heat loss from the skin. Since the models studied here do not account for humidity, 

the latent heat loss of the occupant will not be considered. Therefore, in this report, the heat 

exchange between the human body and the environment will only be the sensible heat loss 

which consists of both convective and radiative heat loss (ASHRAE handbook 2001):  

 

The convective heat transfer is modeled as 

                                                                                                                     (4-1) 

whereas the radiative part is modeled as 

                                                                                                                                        (4-2) 

where ch  is the convective heat transfer coefficient, W/(m²K), rh is the linear radiative heat 

transfer coefficient, W/(m²K), clf is the clothing area factor to account for the actual surface 

area of the clothed body ( 1=clf  for nude body), clT is the mean temperature of the outer 

surface of the clothed body (K),  aT  is the mean ambient air temperature (K) and  rT  is the 

mean radiant temperature (K). 

)( acl
ccl TThfC −=

)( rcl
rcl TThfR −=
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The total sensible heat exchange can be described in terms of a combined heat transfer 

coefficient h  and an operative temperature oT (ASHRAE handbook 2001): 

 

(4-3)     

where  

(4-4)         

 

(4-5) 

 

The operative temperature is defined as the combination of a convection part and a radiation 

part of temperature. It is equal to the temperature at which a specified hypothetical environment 

would support the same heat loss from a human body as the actual environment. In a certain 

environment, the actual temperature that people feel will be the operative temperature.  

4.2 The Modified Thermal Circuit Model 

4.2.1 Thermal Stratification 

As discussed in Section 2.1, air distribution in a room with UFAD system will have stratification 

behavior due to the configuration and thermal buoyancy. In such a non-uniform environment, 

the calculation of air temperature around the person and the wall should account for the 

stratified temperature distribution. Therefore, it is helpful to observe the actual temperature 

distribution in each zone, i.e. the temperature profiles with respect to different height of the 

room. Figure 4.1 shows the normalized air temperature profiles for different configurations, 

calculated from CFD simulations described in the previous chapter. 
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Figure 4.1 Normalized Air Temp. Profiles Comparison for Different Configurations  

(Mode A, 24°C/16°C) 

 

The profiles depict the non-dimensional normalized temperature difference at different height. 

The difference between the air temperature T and the supply temperature sT  is weighted by the 

temperature difference between the exhaust temperature eT and the supply temperature of the 

zone, as shown in equation (3-6): 

                                                        se

s

TT
TT
−
−

=θ                                                                (4-6) 

The air temperature of each zone is obtained by performing area-weighted average calculation of 

temperature for every plane at different height in the two zones. The dark blue profiles show the 

temperature profiles of the scenario of FWR, full wall with resistance. The normalized 

temperature profiles of the two zones are very similar. The orange profiles illustrate the scenario 

of PWD, partition with doors. Compared to the FWR profiles, the PWD’s move a little bit to 
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the right, meaning they had higher θ s, while keeping the same shapes. But when it comes to the 

Partition case, the profiles are greatly skewed, especially the ‘Warm’ zone profile.  The reason is 

the same as that discussed in Section 3.2.4; the interactive advection flow between the cold zone 

and the hot zone through the corridor. Figure 4.2 shows the ‘Partition’ case with different supply 

temperature difference in the two neighboring zones. When the supply temperatures of the two 

cubicles are the same (at 16ºC), the temperature profiles of the two zones will fall very close to 

each other. With the increase of the supply temperature difference between the two zones, the 

profiles will depart more and more from the original overlapped profiles (the green two), 

especially the profiles of the warm zones. It indicates that for the cases with openings to the 

corridor, the shapes of the temperature profiles will greatly depend on the supply temperature 

difference between the two zones.   

Figure 4.2 Normalized air temp. profiles comparison with different ∆Ts (Mode A) 
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Since the shapes of the temperature profiles of FWR and PWD cases are fairly similar, an 

analysis was performed as shown in Figure 4.3. The ‘example’ temperature profile can be broken 

down into three layers: from floor to the height of the desk (0~0.8m), from the desk top to the 

top of the computer and person (0.8~1.2m), and the space above the computer and occupant to 

the ceiling (1.2~2.74m). When looking at the corresponding actual physical model, it is also 

consistent with the calculated temperature profiles, in terms of heat generation in different layers. 

 

 

Figure 4.3 Example Temperature Profile and corresponding physical model 

 

The actual air temperature in the UFAD model should be related with the air distribution 

profiles. The air temperature around the person and the wall are no longer the same, as assumed 

in Cosden’s model, but should be calculated based on a weighted average temperature. The 
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mean air temperature aT  is considered to be the ambient air around the occupant. For the 

underfloor ventilation systems, the calculation of a
iT  for certain zone i should account for the 

stratification of the air in the room due to thermal buoyancy. An assumption is made that the 

mean air temperature around the person is a linear combination of the supply temperature s
iT  

and the exhaust temperature e
iT : 

(4-7) 

Here α  is a certain constant number between 0 and 1. The method to achieve α  will be 

discussed later.  

Applying the same concept as used in aT , the air temperature around walls, cT , can also be 

treated as a linear combination of the exhaust temperature eT and the supply temperature sT , 

while using another similar constant β : 

                                                                                                                                                (4-8)      

  

For a given a temperature profile, the constants α and β can be found by an appropriate integral 

of the temperature profile model.  Namely, 

 

                                                                                                                                              (4-9) 

       

                                                                                                                                             (4-10)  

       

where oH is the height of the seated occupant, equals to 1.2m, cH is the height of the wall, 

which could be a full wall (2.74m) or a partition (1.75m).   For the FWR cases, α is 0.4 and β is 

0.7 (full wall, Hc=2.74m). For the PWD cases, α is 0.5 and β is 0.6 (partition, Hc=1.75m). 
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4.2.2 Modified Thermal Circuit Network 

A building model using a thermal circuit network has been established by Cosden (2005). Figure 

4.4 shows a cut-out example of the thermal circuit network around zone i. Each zone (including 

the outside zone) is treated as a node in the analogous electrical network and connected to all its 

neighbors by a resistance appropriate to the dividing interface ( inR  for interior wall and outR  for 

exterior wall). 

Figure 4.4 Cut-out Example of a thermal circuit network around zone i (Cosden, 2005) 

 

Cosden’s thermal circuit model assumes each zone is fully mixed, in other words, the air 

temperature around the person, near the walls and at the exhaust are the same. Furthermore, the 

model doesn’t account for the thermal comfort of the occupants. Therefore, Cosden’s model is 

only valid for the mixing ventilation system (e.g. the overhead HVAC system). For a building 

with UFAD system, air temperature stratification should be considered. Hence the originally 

thermal circuit model should be modified accordingly. Figure 4.5 shows a side view of the 

modified thermal circuit model.    
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Figure 4.5 Cut-out Example of the modified thermal circuit network around zone i (Side View) 

 

The supply air flow comes into each zone at sT and leaves it at eT . The desired set point 

temperature will equal to the operative temperature oT in each zone, which can be expressed by 

equation (4-5). The energy transfer between zones will be based on the actual air temperature 

cT near the walls. Temperature stratification will be account for by using the parameter α and 

β , discussed in Section 3.2.1. Thus, personal thermal comfort and nonuniform temperature 

distribution will be included in the modified model. Unlike the original thermal circuit model, the 

exhaust temperatures are also involved in the calculation as well. Therefore, for a building with 

N zones, 2N variables (N sT and N eT ) need to be solved. They can be solved based on the 2N 

equations (N operative temperature equations and N energy balance equations). 
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4.3 The Matrix Equation Formulation 

4.3.1 The Operative Temperature 

The desired set point temperature, *T , will be considered to be perfectly achieved through the 

HVAC system. Once the desired set point temperature is determined by the occupant or the 

system, the actual temperature the occupant will experience, the operative temperature, will be 

equal to the desired temperature. A linkage matrix ijL  can be applied (Cosden 2005) to account 

for different thermostat control strategies, e.g. Three Thermostat for all (TTFA), or Have It 

Your Way (HIYW). To obtain the desired temperature, the mean air temperature aT and the 

mean radiant temperature rT  need to satisfy equation (3-5).  

 

The calculation of the mean air temperature around the person aT  is already discussed in 

Section 4.2.1. 

(4-7) 

The mean radiant temperature rT is also an important variable in making thermal calculations 

for the human body. It is defined as a uniform temperature of an imaginary enclosure in which 

radiant heat transfer from the human body equals the radiant heat transfer in the actual 

nonuniform enclosure (ASHRAE handbook 2001). The mean radiant temperature can be 

calculated from the temperature of the surrounding walls and surfaces and their positions with 

respect to the occupant. For an enclosure with relatively small temperature difference between 

surfaces, rT  of a certain zone i can be calculated by equation: 

                                          Np
iw

Np
iw

p
iwr

i FTFTFTT −−− +⋅⋅⋅++= 2211                                   (4-11) 

where iw
NT  is the surface temperature of surface N of zone i (K), NpF −  is the angle factor 

between a person and surface N. It can be assumed that a wall temperature is the average of the 
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air temperatures at both sides of the wall. The angle factors can be expressed by a matrix ijF , 

showing the angle factor between the person in zone i and the surface between zone i and the 

neighboring zone j. Thus the mean radiant temperature r
iT can be expressed by equation (4-12):  

                                                     ∑
=

⎟
⎟
⎠

⎞
⎜
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⎝

⎛ +
=

N

j

c
i

c
j

ij
r

i

TT
FT

0 2
                                              (4-12) 

Notice here j is from 0 to N, the total number of zones. j equals 0 presents an outside wall. In 

this research, since the occupant is relatively in the middle of the workstation and the four walls 

around him have very similar areas, it is reasonable to assume the angle factor between the 

person and each surface around it to be the same and equals 0.25 (the angle factor between the 

person and the floor or the ceiling is relatively small and is ignored). The view factors can be 

easily changed in the code for different type of building configurations and walls. 

 

As for the convective heat transfer coefficient, a recommended ch  can be obtained from 

ASHRAE handbook (2001): for seated person with moving air at the velocity 2.00 <<V  m/s, 

1.3=ch  W/(m²K). Also rh  is stated nearly constant at a value of 4.7 W/(m²K) (ASHRAE 

handbook 2001).  

 

Substituting equation (4-9), (4-10), and (4-12) into equation (4-5), and after rearranging the 

equation, it can be written as: 

                                                                JBTAT se =+                                                    (4-13) 

where, 
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. 

eT and sT are temperature vectors. The operative temperatures o
iT are given for all the zones as 

the desired set point temperature. outT is the outside temperature. 

 

4.3.2 Energy Balance Equations 

For each zone (office) in a system (building), first law of thermodynamics must be satisfied, i.e. 

the heat flux into and out of each zone must equal zero. The heat flux consists of three terms: 

the conduction and advection (cond + adv), internal heat generation of the zone (gen) and the 

HVAC supplied energy flux (HVAC): 

                                          0
cond adv gen HVAC

i ii
Q Q Q

+
+ + =∑ ∑& & &                                            (4-14) 

The three terms can be broken down to (Cosden 2005): 

                                                                                                                       (4-15)  

ijU in the first term is a heat transfer coefficient defined as: 

                                                        1
ij ij
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U C
R

= +                                                               (4-16) 

ijC is the effective flow rate between zone i and zone j with the units J/sK. ijR is the conductive 

and convective resistance of the interface between the two zones. j=0 indicates an outside wall. 
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c
jT and c

iT  are the effective air temperature near the wall in zone j and zone i. The method to 

obtain these temperatures has been already discussed in Section 3.2.1. iG  is the sum of  internal 

heat generation in each zone i. iiC is treated as the effective flow rate coming into zone i from 

the HVAC system.  

 

Substitute equation (4-9) into equation (4-15), the resulting equation can be written in the 

following form: 

                                                           KETDT se =+                                                         (4-17) 

where, 

                       ijij UD ⋅= β ,  i≠j, 
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N

j
ijii CUD −⋅−= ∑

=0
β , 

                       ijij UE ⋅−= )1( β ,  i≠j, 

                       ii

N

j
ijii CUE +⋅−−= ∑
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)1( β , 

                       outioii TUGK ⋅−−= . 

Again, eT and sT are temperature vectors. outT is the outside temperature. 

 

4.4 Model Implementation 

MATLAB, a commercially available software, is well known for its excellent capability in 

calculations involving matrices and vectors (Matlab release 13). The MATLAB code was written 

based on the methods described earlier. The complete code is included in the Appendix.  The 

outline of the format and structure of the code is shown in Figure 4.6.   
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The combine linear equation sets (4-13) and (4-17), equations can be written in an overall matrix 

notation, with unknown supply temperature vector sT and exhaust temperature vector eT : 

 

                                                      ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
K
J

T
T

ED
BA

s

e

                                                      (4-18) 

 

Coefficient matrix A, B, D, and E have already been defined above. In the code, the overall 

coefficient matrix consists of A, B, D, and E is called H. The right hand side vector J and K are 

also known and the overall right-hand side vector is defined as S in the code. The only 

unknowns are vectors eT and sT . From equation (3-18), it can be easily solved for the unknown 

temperature vectors, given the stratification parameters from CFD (α andβ ), the view factors 

matrix ( ijF ), the thermal resistance matrix ( ijU ), the thermostat control strategy ( ijL ), the 

HVAC air flow rate ( iiC ), the internal heat generation from each zone ( iG ), and the heat 

transfer coefficient for the occupants ( ch and rh ). Although the supply temperature vector sT is 

the only temperature of interest, eT has to be solved at the same time for closure of the linear 

equations.  
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Figure 4.6 Flow Chart of the modified thermal circuit model calculation 
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Building HVAC power usage calculation 



Report No. DE-FG02-03ER63694-F1 
 

 55

4.5 Computed Results 

Cosden has developed a model for building energy calculation using the thermal circuit model 

combined with a temperature bin method (Cosden 2005). The idea is grouping the yearly 

temperature profile of a city by number of hours per year in various temperature intervals (bins). 

The building energy consumption calculation will be based on a steady state calculation for each 

constant outdoor temperature bin and then multiplied by the number of hours in each bin. 

Common practice in the U.S. is to use a 5°F (3°C) temperature bin.  

 

Cosden’s thermal circuit model can be replaced by the modified thermal circuit model in order 

to calculate the appropriate supply temperatures for the UFAD systems, while the temperature 

bin method can still be applied for building energy calculation.  

Figure 4.7 Yearly Energy Usage Comparisons for the Original and Modified TC Models 
(TTFA) 
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Figure 4.8 Yearly Energy Usage Comparisons for the Original and Modified TC Models 
(HIYW) 

 

Figure 4.7 and Figure 4.8 show the integrated yearly energy usage for the two control strategy: 

TTFA and HIYW. Comparisons were made between the original and the modified thermal 
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achieved by the economizer. Because the outside air temperature is sufficient for ventilating the 

entire building. Figure 4.9 presents the ratio of HIYW yearly energy usage to TTFA yearly energy 

usage and again comparisons were made between the original and the modified TC model.  

Figure 4.9 Ratio of HIYW to TTFA Comparisons for the Original and Modified TC Models 

 

Here, a value of 1 indicates that HIYW and TTFA have exactly the same yearly energy 
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5 Conclusions 

For cases composed of two cubicles and an adjoining corridor, the advective flow between zones is very significant 

and severely limits the occupants’ ability to control the personal micro-environments via inlet temperature control.  

CFD calculations were performed for pairs of cubicles with an adjoining corridor in which the 

supply temperatures in the two cubicles differed by up to 8 degrees C.  In cases where the air 

was allowed to freely traverse through the corridor, the temperatures “felt” by the occupants in 

the two cubicles differed by less than 25% of the supply temperature difference.  Flow 

visualization of the CFD results indicated that this loss of personal temperature control was 

caused by the cold supply flow sinking to the floor and traversing through the corridor into the 

other cubicle; at the same time, the warm supply in the other cubicle ascended into the space 

above the cubicles and had little effect on the temperatures “felt” by the occupant.   Through a 

series of parametric studies it was found that the effectiveness of the personal environment 

control could best be improved by installing doors at the openings between the cubicles and the 

corridor; other strategies, such as changing the height and insulation of the cubicle walls, 

changing the configuration of the cubicles, and altering the swirl direction and location of the 

inlet diffusers had a negligible effect on the control of temperature in the two cubicles. 

 

A thermal comfort model that accounts for stratified temperature profiles and radiation is required for 

configurations that employ an underfloor air distribution (UFAD) system.  While Cosden’s original thermal 

circuit (TC) model is suitable for predicting the annual energy consumption of buildings with 

mixing ventilation, its well-mixed assumption is not valid for the stratified flows associated with 

UFAD.  In the current work, detailed CFD simulations were performed to predict the vertical air 

temperature profiles associated with UFAD, and a simple model was developed to approximate 
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these profiles.  The thermal circuit model was subsequently modified to account for the thermal 

stratification, both for the temperature experienced by the occupant and also for the energy 

transfer between zones via convection and conduction. Additionally, Cosden’s model was 

modified to include a thermal comfort model that accounts both for convection/conduction and 

radiation to/from the occupant.  Care was taken to include these additional physical phenomena 

into Cosden’s model via linear relationships, and thus had a very small impact on the overall 

execution time of the model.   

 

The modifications to the thermal circuit model reduce the predicted energy usage for UFAD in non-temperate cities 

by between 10 and 26% annually, as compared with Cosden’s model.  These results apply both to 

Cosden’s three-thermostats-for-all (TTFA) and have-it-your-way (HIYW) control strategies.  

This reduction is attributed to the temperature stratification associated with UFAD, which 

Cosden’s model ignores.  For cities with moderate climates such as San Francisco, the modified 

model predicts about 17% more energy is required, due largely to increased frequency of use of 

the economizer.  Only slight changes were observed on the ratio of HIYW yearly energy usage 

to TTFA yearly energy usage using the modified thermal circuit model.   
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6 Appendix 

Listed here is the code for modified thermal circuit model, written in MATLAB. The main loop 

contains three subroutines: Lcalc.m, Rcalc.m, Fcalc.m. 

6.1 Main Loop 

% Modified Thermal Circuit Model 
% By Simon Zhang 
clear; 
  
% Define zone numbers 
n=7; 
m=7; 
  
%load SeckinDist.mat T  % A random distribution with mean=24(C) & 
STD=1.2(C)  
T=24*ones(1,n*m);  % Uniform desired temp at 24C 
  
Tout=15; % The outside temperature © 
 
%linear coefficient for zonal temp cal 
alpha=1; 
beta=1; 
  
% Heat transfer coefficient for opreative temp 
hc=3.1; 
hr=4.7; 
hc1=hc/(hc+hr); % define the hc' 
hr1=hr/(hc+hr); % define the hr' 
  
%set the linkage matrix (the control strategy) 
counter=1;   % counter=1, TTFA; counter=2, HIYW 
controltype=1; % controltype=1, 3TFA; controltype=2, 1TFA; controltype=3, 
2TFA; 
Lcalc; 
  
%Set thermostat setpoints  
%Tstar=24*ones(1,n*m); 
Tstar=L*T'; 
  
  
%load constants, resistances, and ventilation 
Rcalc; 
  
%load view factor matrix for radiation 
Fcalc; 
  
%Define Matrix A,B,C and D 
for i=1:n*m 
    for j=1:n*m 
        if i==j 
            AT(i,j)=alpha*hc1+beta*hr1*sum(F(i,:))/2+beta*hr1*Fout(i)/2; 
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            BT(i,j)=(1-alpha)*hc1+(1-beta)*hr1*sum(F(i,:))/2+(1-
beta)*hr1*Fout(i)/2; 
            DT(i,j)=-beta*sum(U(i,:))-beta*Uout(i)-mc(i); 
            ET(i,j)=-(1-beta)*sum(U(i,:))-(1-beta)*Uout(i)+mc(i); 
        else 
            AT(i,j)=beta*hr1*F(i,j)/2; 
            BT(i,j)=(1-beta)*hr1*F(i,j)/2; 
            DT(i,j)=beta*U(i,j); 
            ET(i,j)=(1-beta)*U(i,j); 
        end 
    end 
end 
  
%Define Matrix J and K 
for i=1:n*m 
    J(i)=Tstar(i)-hr1*Fout(i)*Tout/2; 
    K(i)=-G(i)-Uout(i)*Tout; 
end 
  
  
%Define the overall Matrix E (left hand side coefficient matrix) 
for i=1:n*m*2 
    for j=1:n*m*2 
        if (i<=n*m)&(j<=n*m) 
            H(i,j)=AT(i,j); 
        elseif (i<=n*m)&(j>=n*m) 
            H(i,j)=BT(i,j-n*m); 
        elseif (i>=n*m)&(j<=n*m) 
            H(i,j)=CT(i-n*m,j); 
        else H(i,j)=DT(i-n*m,j-n*m); 
        end 
    end 
end 
  
%Define the overall Matrix L (right hand side constant matrix) 
for i=1:n*m*2 
    if i<=n*m 
         S(i)=J(i); 
    else S(i)=K(i-n*m); 
    end 
end 
  
%Solve for the Ts and Te  
TT=H\S'; 
  
for i=1:n*m*2; 
     if i<=n*m 
         Te(i)=TT(i); 
    else Ts(i-n*m)=TT(i); 
    end 
end 
 
 

6.2 Linkage Matrix (Lcalc.m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Lcalc.m subroutine 
% 
%       L matrix 
% L matrix defines thermostat control 
% L(1:n*n,x) for all offices controlled by office x 
% L(x,x) only office x controlled by office x 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
L=zeros(n*m,n*m); 
 
if counter==1  %conventional 
    if controltype==1; %3TFA 
         
        L(1:n*m,25)=1; 
         
        for i=1:n 
            if i==1 
                L(i,1)=1; 
                L(i,25)=0; 
            elseif i==n 
                L(i,1)=1; 
                L(i,25)=0; 
            else 
                L(i,2)=1; 
                L(i,25)=0; 
            end 
        end 
        %right 
        for i=2*n:n:n*m-n 
            if i==n 
                L(i,1)=1; 
                L(i,25)=0; 
            else 
                L(i,2)=1; 
                L(i,25)=0; 
            end 
        end 
        %left 
        for i=n+1:n:n*m-(n-1); 
            if i==n*m-(n-1) 
                L(i,1)=1; 
                L(i,25)=0; 
            else 
                L(i,2)=1; 
                L(i,25)=0; 
            end 
        end 
        %bottom 
        for i=n*m-(n-1)+1:n*m 
            if i==m*n 
                L(i,1)=1; 
                L(i,25)=0; 
            else 
                L(i,2)=1; 
                L(i,25)=0; 
            end 
        end 
         
    elseif controltype==2;  %1TFA 
        L(1:n*m,X)=1; 
    elseif controltype==3;  %2TFA 
         
        L(1:n*m,X)=1; 
         
        for i=1:n 
            L(i,X2)=1; 
            L(i,X)=0; 
        end 
        %right 
        for i=n:n:n*m 
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            L(i,X2)=1; 
            L(i,X)=0; 
        end 
        %left 
        for i=1:n:n*m-(n-1); 
            L(i,X2)=1; 
            L(i,X)=0; 
        end 
        %bottom 
        for i=n*m-(n-1):n*m 
            L(i,X2)=1; 
            L(i,X)=0; 
        end 
         
         
    end 
     
elseif counter==2 %HIYW 
    for i=1:n*m 
        L(i,i)=1; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 

6.3 Resistance Matrix (Rcalc.m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Rcalc.m subroutine 
% 
% Last update 5/1 
%   included hin and hout and window calculations explicitly 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%initialize error vectors (used for COP/cyc over capacity errors) 
errcount=0; 
capacityover=0; 
 
Qint=260; %int heat gain (W) 
 
%set internal heat generation 
G=Qint*ones(n*m,1); 
 
%HVAC fan power 
PowerFAN=1438; %W 
 
% Set Temperature bin vector W % 
maxtemp=46; 
mintemp=-47; 
step=3; 
W=maxtemp:-step:mintemp; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
Vol=3.5*3.5*3; %[m^3] vol of room 
ACH=5;         %[1/h] Air changes per hour for each room 
airdensity=1.204; %[kg/m^3] 
specheat=1012;    %[J/kgK] of air 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%       Ventilation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:n*m  %create vector mc (mdot*c) 
    mc(i)=specheat*Vol*airdensity*ACH/3600;  %[J/sK]  
end 
 
%fresh air ventilation 
for i=1:n*m 
    ventout(i)=specheat*airdensity*.009439; %[J/sK]  .009439 m^3/s = 
20cfm 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               U matrix Creation 
%         (note for n x n building ONLY) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
U=zeros(n*m,n*m);   %initialize resistance matrix 
 
Area=3.5*3; %[m^2] area of each wall between rooms  
Awind=5; %[m^2] area of window on exterior wall  
Awall=Area-Awind; %[m^2] exterior wall without window 
 
Routwall=2.47;%[m^2K/W]  
Rinwall=0.392; %[m^2K/W] 
Routwindow=.353; %[m^2K/W]  (for TRNSYS: 1/7.045) 
 
hin=3.06; %[W/m^2K]     (11/3.6=3.06 TRNSYS) (8.29 ASHRAE) 
hout=17.78; %[W/m^2K]   (64/3.6=17.78 TRNSYS) (22.7 AHSRAE) 
 
Uewall=1/(Routwall+1/hout+1/hin); %[W/m^2K] 
Uewind=1/(Routwindow+1/hout + 1/hin); %[W/m^2K] 
 
UAin=Area/(2/hin+Rinwall);   %[W/K]    
UAext=Uewall*Awall+Uewind*Awind; %[W/k]  
 
Uin=UAin;   %INVERSE of interior resistance * Wall Area 
Uext=UAext; %INVERSE of exterior resistance * Wall Area 
 
%%%%%% 
% Conductance Matrix U formulation 
%%%%%% 
 
for i=1:n*m; 
    for j=1:n*m; 
         
        if j==i+n;      %down 
            U(i,j)=Uin; 
            if (n*m-i)<n;   %bottom row exclusion 
                U(i,j)=0; 
            end 
             
             
        elseif j==i+1;  %right 
            U(i,j)=Uin; 
            for d=n:n:(n*m) %right row exclusion 
                if i==d 
                    U(i,j)=0; 
                end 
            end 
             
        elseif j==i-n   %up 
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            if i>n;         %top row exclusion 
                U(i,j)=Uin; 
            end 
             
        elseif j==i-1   %left 
            U(i,j)=Uin; 
            for d=1:n:n*m-(n-1); %left row exclusion 
                if i==d 
                    U(i,j)=0; 
                end 
            end     
             
             
        end 
    end 
end 
 
%%%%%%% 
% Uout=conductance vector with outside 
%%%%%%% 
 
Uout=zeros(n*m,1); 
%top 
for i=1:n 
    Uout(i)=Uout(i)+Uext; 
end 
%right 
for i=n:n:n*m 
    Uout(i)=Uout(i)+Uext; 
end 
%left 
for i=1:n:n*m-(n-1); 
    Uout(i)=Uout(i)+Uext; 
end 
%bottom 
for i=n*m-(n-1):n*m 
    Uout(i)=Uout(i)+Uext; 
end 
 
%roof 
for i=1:n*m 
   Uout(i)=Uout(i)+3.5*3.5*(1/Routwall); 
end 
Uout=Uout+ventout'; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           End of U matrix creation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 

6.4 View Factors Matrix (Fcalc.m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Radiation Matrix F formulation 
% Fcalc.m subroutine 
% F matrix defines view factors between person and the walls around it 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Fin=0.25; 
Fo=0.25; 
 
for i=1:n*m; 
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    for j=1:n*m; 
         
        if j==i+n;      %down 
            F(i,j)=Fin; 
            if (n*m-i)<n;   %bottom row exclusion 
                F(i,j)=0; 
           end 
             
             
        elseif j==i+1;  %right 
            F(i,j)=Fin; 
            for d=n:n:(n*m) %right row exclusion 
                if i==d 
                    F(i,j)=0; 
                end 
            end 
             
         elseif j==i-n   %up 
            if i>n;         %top row exclusion 
                 F(i,j)=Fin; 
            end 
             
        elseif j==i-1   %left 
            F(i,j)=Fin; 
            for d=1:n:n*m-(n-1); %left row exclusion 
                if i==d 
                    F(i,j)=0; 
                end 
            end     
                         
        end 
    end 
end 
 
% Fout 
 
Fout=zeros(n*m,1); 
 
%top 
for i=1:n 
    Fout(i)=Fout(i)+Fo; 
end 
%right 
for i=n:n:n*m 
    Fout(i)=Fout(i)+Fo; 
end 
%left 
for i=1:n:n*m-(n-1); 
    Fout(i)=Fout(i)+Fo; 
end 
%bottom 
for i=n*m-(n-1):n*m 
    Fout(i)=Fout(i)+Fo; 
end 
 
% %roof 
% for i=1:n*m 
%    Fout(i)=Fout(i)+3.5*3.5*(1/Routwall); 
%  
% end 
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6.5 Energy Calculation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Ian Cosden % Simon Zhang 
%   Building Energy Thermal Circuit Model 
%     
%      5/31/2006 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Subroutines:  Rcalc.m Lcalc.m CYCDEGcalcCity.m COPcalcCity.m 
%  yearlyEnergy.m 
%  Files:  Seckindist.mat binhours.mat binhoursWORK.mat 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
clear; 
n=7;     %set # of horizontal rooms 
m=7;     %set # of vertical rooms 
 
cityset=6; %city # to display energy graph at end 
 
 
 
bintype=1; %set =1 for 8760 hours/year, or =2 for 7am-7pm hours (4745) 
 
if bintype==1 
    load binhours; 
elseif bintype==2 
    load binhoursWORK; 
    binhours=binhoursWORK; 
else 
    disp('Error with bintype, using 4745 hours') 
    load binhoursWORK; 
end 
 
 
% controltype=input('Thermostat control 1: 3TFA, 2: Single Thermo 3: TTFA  
:') 
controltype=1; 
if controltype==1 
elseif controltype==2 
    X=25; 
else 
    X=25; 
    X2=1; 
end 
 
ci=clock; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%% 
%load constants, resistances, and ventilation 
Rcalc;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%initialize heating and cooling power vectors 
PowerCOOL=zeros(1,67); 
PowerHEAT=zeros(1,67); 
 
 
%%%%%%%%%%   main loop   %%%%%%%%%%%%%%%%%%%%% 
 
%counter = 1 for conventional 
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%counter = 2 for HIYW 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for counter=1:2 
    if counter==1 
        T=24*ones(1,n*m);  %uniform 24C setpoints 
    elseif counter==2 
        % specify desired temperatures for HIYW 
        if n*m==49    
            load SeckinDist.mat T   %load predetermined distribution 
        else 
            T=1.2*randn(1,n*m)+24;  
        end 
    end 
     
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % claculate L matrix - thermostat control scheme 
    Lcalc; 
    %%%%%%%%%%%%%%%%%%%%%%%%%% 
     
   
    %Formulation of matrix equation A*T=B 
     
    A=zeros(n*m,n*m); 
    for i=1:n*m 
        for j=1:n*m 
            if i==j 
                for k=1:n*m 
                    A(i,j)=A(i,j)-U(i,k)-L(i,k)*U(k,i)*mc(i)/mc(k); 
                end 
            else 
                 
                for k=1:n*m 
                    A(i,j)=A(i,j)-L(i,k)*U(k,j)*mc(i)/mc(k); 
                end 
            end 
            if i==j 
                A(i,j)=A(i,j)-mc(i)-Uout(i); 
            else 
                A(i,j)=A(i,j)+U(i,j); 
            end 
             
        end 
    end 
    COPbin=0; 
    PLCOP=0; 
     
    %Set thermostat setpoints  
    Tstar=T; 
     
     
  %%%City loop for 15 DOE cities 
    %See list for corresponding numbers/cities 
     
    for citynum=1:15 
         
      %%%weather bin loop 
         
        for bin=1:length(W) 
             
            Tout=W(bin); 
            
            %Set up B matrix 
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            B=zeros(n*m,1); 
             
            for i=1:n*m 
                for k=1:n*m 
                    f=0; 
                    for j=1:n*m 
                        f=f+U(k,j); 
                    end 
                    B(i)=B(i)-mc(i)*L(i,k)*(Uout(k)*(Tstar(k)-
Tout)/mc(k)... 
                        +f*Tstar(k)/mc(k)-G(i)/mc(k)+Tstar(k)); 
                end 
                B(i)=B(i)-(Uout(i))*Tout-G(i); 
            end 
             
            %%%%%%  
            Tnew=A\B; 
            %%%%%%                 
            %% Tnew is vector of new zonal temperatures 
             
             
 % Solve for necessary supply temperatures vector Ts 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%% Simon's Code  Starts %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%linear coefficient for zonal temp cal 
alpha=0.4; 
beta=0.7; 
 
% Heat transfer coefficient for opreative temp 
hc=3.1; 
hr=4.7; 
hc1=hc/(hc+hr); 
%hc1=1; 
hr1=hr/(hc+hr); 
 
%Set thermostat setpoints  
%Tstar=24*ones(1,n*m); 
Tstar=T; 
 
%load constants, resistances, and ventilation 
Rcalc; 
 
%load view factor matrix for radiation 
Fcalc; 
 
%Define Matrix A,B,C and D 
for i=1:n*m 
    for j=1:n*m 
        if i==j 
            AT(i,j)=alpha*hc1+beta*hr1*sum(F(i,:))/2+beta*hr1*Fout(i)/2; 
            BT(i,j)=(1-alpha)*hc1+(1-beta)*hr1*sum(F(i,:))/2+(1-
beta)*hr1*Fout(i)/2; 
            CT(i,j)=-beta*sum(U(i,:))-beta*Uout(i)-mc(i); 
            DT(i,j)=-(1-beta)*sum(U(i,:))-(1-beta)*Uout(i)+mc(i); 
        else 
            AT(i,j)=beta*hr1*F(i,j)/2; 
            BT(i,j)=(1-beta)*hr1*F(i,j)/2; 
            CT(i,j)=beta*U(i,j); 
            DT(i,j)=(1-beta)*U(i,j); 
        end 
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    end 
end 
 
%Define Matrix J and K 
for i=1:n*m 
    J(i)=Tstar(i)-hr1*Fout(i)*Tout/2; 
    K(i)=-G(i)-Uout(i)*Tout; 
end 
 
 
%Define the overall Matrix E (left hand side coefficient matrix) 
for i=1:n*m*2 
    for j=1:n*m*2 
        if (i<=n*m)&(j<=n*m) 
            E(i,j)=AT(i,j); 
        elseif (i<=n*m)&(j>=n*m) 
            E(i,j)=BT(i,j-n*m); 
        elseif (i>=n*m)&(j<=n*m) 
            E(i,j)=CT(i-n*m,j); 
        else E(i,j)=DT(i-n*m,j-n*m); 
        end 
    end 
end 
 
%Define the overall Matrix LT (right hand side constant matrix) 
for i=1:n*m*2 
    if i<=n*m 
         LT(i)=J(i); 
    else LT(i)=K(i-n*m); 
    end 
end 
 
%Solve for the Ts and Te  
TT=E\LT'; 
 
for i=1:n*m*2; 
     if i<=n*m 
         Te(i)=TT(i); 
    else Ts(i-n*m)=TT(i); 
    end 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%% Simon's Code  Ends %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%%%%%%%%%%%%%% Original Ian's Code %%%%%%%%%%%%%%%%%          
%              Ts=zeros(n*m,1); 
%              for k=1:n*m 
%                 for j=1:n*m 
%                     Ts(k)=Ts(k)+(1/mc(k))*U(k,j)*(Tstar(k)-Tnew(j)); 
%                 end 
%                 Ts(k)=Ts(k)+(1/mc(k))*Uout(k)*(Tstar(k)-Tout)-
G(k)/mc(k)+Tstar(k); 
%             end 
%%%%%%%%%%%%%%%%%% Original Ian's Code %%%%%%%%%%%%%%%%%    
 
 
            %Now solve for energy supplied to each zone Qo 
             
            Qo=zeros(n*m,1); 
            for i=1:n*m 
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                for k=1:n*m 
                    Qo(i)=Qo(i)+mc(i)*L(i,k)*(Ts(k)-Tnew(i)); 
                end 
            end 
             
            %Building load (i.e. NO equipment, heat = cool) 
            %for debugging and TRNSYS comparisons only 
            qbuilding2(bin)=sum(abs(Qo(1:n*m))); 
             
             
             
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        
            %%%%%%%%%%begin Energy Calculation%%%%%%%        
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            TbuildAVG=mean(mean(Tnew)); %for COP calculations 
            COP=9e10; %initialize in case of economizer zone 
            %%%FURNACE EFFICIENCY%%%% +conversion to electricity (1 gas= 
2.78 elect) 
            eff=(.85*2.78); 
             
            if and(controltype==2, counter==1) %OTFA 
                if Qo(X)<0 %denotes cooling 
                    %%ECONOMIZER%% 
                    if Tout<=Ts(X) %Qo(X)>economizercapacity(bin) 
                        QcoolCOP(bin)=0; 
                        econoOFF=0; 
                        %%ECONOMIZER end %%     
                    else 
                        econoOFF=1; 
                        COPcalcCity; %call subroutine COPcalcCity to find 
COP 
                    end 
                    COPbin(bin)=COP; 
                    QcoolCOP(bin)=0; 
                    Qheat=zeros(1,length(W)); 
                    for i=1:n*m 
                        if Qo(i)<0 
                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 
                        end 
                    end 
         %%%%%%Cyclic Degredation Factor Caclulation%%%%%%%%%%% 
                    CYCDEGcalcCity 
         %%%%%%end Cyclic Degredation Factor%%%%%%%%%%%%%%%%%%% 
                    if overcap==1 
                        PowerCOOL(bin)=econoOFF*Capacity*(-
1000)/PLCOP(bin); 
                    else 
                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 
                    end   
                     
                else %denotes heating              
                    for i=1:n*m 
                        if Qo(i)>0 
                            Qheat(bin)=Qheat(bin)+Qo(i); 
                        end 
                    end 
                    PowerHEAT(bin)=Qheat(bin)/eff;                
                end %end OTFA energy Calculation 
                 
                 
                 
            elseif and(controltype==3, counter==1) %TTFA 
                 
                if min(Qo(X),Qo(X2))<0 %denotes cooling 
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                    %%ECONOMIZER%% 
                    if Tout<=min(Ts(X),Ts(X2)) 
%Qo(X)>economizercapacity(bin) 
                        QcoolCOP(bin)=0; 
                        econoOFF=0; 
                        %%ECONOMIZER end %%    
                    else 
                        econoOFF=1; 
                        COPcalcCity; %call subroutine COPcalcCity to find 
COP 
                    end 
                    COPbin(bin)=COP; 
                    QcoolCOP(bin)=0; 
                    Qheat=zeros(1,length(W)); 
                    for i=1:n*m 
                        if Qo(i)<0 
                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 
                        end 
                    end 
      %%%%%%Cyclic Degredation Factor Caclulation%%%%%%%%%%% 
                    CYCDEGcalcCity 
         %%%%%%end Cyclic Degredation Factor%%%%%%%%%%%%%%%%%%% 
                    if overcap==1  %should not happen 
                        PowerCOOL(bin)=econoOFF*Capacity*(-
1000)/PLCOP(bin); 
                    else 
                        %cooling power calculation 
                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 
                    end   
                     
                end %end Cooling loop 
                 
                if max(Qo(X),Qo(X2))>0 %denotes heating 
                    for i=1:n*m 
                        if Qo(i)>0 
                            Qheat(bin)=Qheat(bin)+Qo(i); 
                        end 
                    end 
                end 
                %heating power calculation 
                PowerHEAT(bin)=Qheat(bin)/eff; 
                 
     %%%%%%%%%%%%% 
            elseif and(controltype==1, counter==1) %3TFA 
                 
                if min([Qo(1),Qo(2),Qo(25)])<0 %denotes cooling 
                    %%ECONOMIZER%% 
                    if Tout<=min([Ts(1),Ts(2),Ts(25)]) 
%Qo(X)>economizercapacity(bin) 
                        QcoolCOP(bin)=0; 
                        econoOFF=0; 
                        %%ECONOMIZER end %%              
                    else 
                        econoOFF=1; 
                        COPcalcCity; %call subroutine COPcalcCity to find 
COP 
                    end 
                    COPbin(bin)=COP; 
                    QcoolCOP(bin)=0; 
                    Qheat=zeros(1,length(W)); 
                    for i=1:n*m 
                        if Qo(i)<0 
                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 
                        end 
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                    end 
                     
             %%%%%%Cyclic Degredation Factor Caclulation%%%%%%%%%%% 
                    CYCDEGcalcCity 
             %%%%%%end Cyclic Degredation Factor%%%%%%%%%%%%%%%%%%%                 
                    if overcap==1 %will only happen if something has been 
changed 
                        error('capacity insufficient 3TFA') 
                    else 
                        %cooling power calculation 
                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 
                    end                       
                                                             
                end %end Cooling loop 
                 
                if max([Qo(1),Qo(2),Qo(25)])>0 %denotes heating 
                    for i=1:n*m 
                        if Qo(i)>0 
                            Qheat(bin)=Qheat(bin)+Qo(i); 
                        end 
                    end 
                end 
                %heating power calculation 
                PowerHEAT(bin)=Qheat(bin)/eff; 
                 
                 
       %%%%%%%%%%%%%%%%%%% 
                 
                 
            elseif counter==2 %HIYW 
                if min(Qo)<0 %denotes cooling 
                    %%ECONOMIZER%% 
                    if Tout<=min(Ts) %Qo(X)>economizercapacity(bin) 
                        QcoolCOP(bin)=0; 
                        econoOFF=0; 
                        %%ECONOMIZER end %%              
                    else 
                        coldpeople(citynum,bin)=0; 
                        for i=1:n*m 
                            if Tout>=Ts(i) 
                                
coldpeople(citynum,bin)=coldpeople(citynum,bin)+1; 
                            end 
                        end 
                        econoOFF=1; 
                        COPcalcCity; %call subroutine COPcalcCity to find 
COP 
                    end 
                    COPbin(bin)=COP; 
                    QcoolCOP(bin)=0; 
                    Qheat=zeros(1,length(W)); 
                    for i=1:n*m 
                        if Qo(i)<0 
                            QcoolCOP(bin)=QcoolCOP(bin)+Qo(i); 
                        end 
                    end 
                    %%%%%%Cyclic Degredation Factor 
Caclulation%%%%%%%%%%% 
                    CYCDEGcalcCity 
                    %%%%%%end Cyclic Degredation 
Factor%%%%%%%%%%%%%%%%%%% 
                    if overcap==1 %should not happen 
                        error('capacity insufficient HIYW') 
                    else 
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                        %cooling power calculation 
                        PowerCOOL(bin)=econoOFF*QcoolCOP(bin)/PLCOP(bin); 
                    end   
                     
                end %end Cooling loop 
                 
                if max(Qo)>0 %denotes heating 
                    for i=1:n*m 
                        if Qo(i)>0 
                            Qheat(bin)=Qheat(bin)+Qo(i); 
                        end 
                    end 
                end 
                %heating power calculation 
                PowerHEAT(bin)=Qheat(bin)/eff;             
            end %control type energy loop 
    
             
             
            %%%%%%%%%%%%%%%%%%%%%% 
            %%%%% 
            BuildingPower(bin)=PowerHEAT(bin)-PowerCOOL(bin)+PowerFAN; 
            %%%%% 
            %%%%%%%%%%%%%%%%%%%%%%% 
            %total building power sum of heat+cool+fan 
               
            %bookkeeping  
            if counter==1 
                TTFAtemps(:,bin,citynum)=Tnew; 
            elseif counter==2 
                HIYWtemps(:,bin,citynum)=Tnew; 
            end 
             
            if W(bin)==19 
                Qoquilt(:,counter)=Qo; 
            end 
             
             
             
        end %bin loop 
         
         
        %more bookkeeping 
        if counter==1 
            TTFApower(citynum,:)=BuildingPower; 
            TTFAcooling(citynum,:)=PowerCOOL; 
        elseif counter==2 
            HIYWpower(citynum,:)=BuildingPower; 
            HIYWcooling(citynum,:)=PowerCOOL; 
        end 
         
        %for graph at end of code 
        if citynum==cityset 
            Q2(1:length(W),1)=W'; 
            Q2(1:length(W),counter+1)=BuildingPower'; 
            Q(1:length(W),1)=W'; 
            Q(1:length(W),counter+1)=qbuilding2'; 
            plotlim=find(binhours(citynum,:)>0); 
            minplot=min(plotlim); 
            maxplot=max(plotlim); 
        end 
         
    end %end city loop 
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end %counter loop 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       Post processing and debugging 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cf=clock; 
tottime=cf-ci %displays total run time (just curious) 
 
 
%Plots of (1) building load 
% (2) bin power consumption for cityset 
 
if controltype==1 
    leg='3TFA'; 
elseif controltype==2 
    leg='OTFA'; 
elseif controltype==3 
    leg='TTFA'; 
end 
plottitle2=['3TFA Baseline Case']; 
 
figure(1) 
plot(Q(:,1),Q(:,2)/1000,'-',Q(:,1),Q(:,3)/1000) 
ylim([0 70]) 
grid on 
xlabel('Bin Temp (C)') 
ylabel('Building Load Power Usage (kW)') 
legend(leg,'HIYW') 
title(plottitle2) 
figure(2) 
plot(Q2(minplot:maxplot,1),Q2(minplot:maxplot,2)/1000,'--
',Q2(minplot:maxplot,1),Q2(minplot:maxplot,3)/1000) 
ylim([1 9]) 
grid on 
xlabel('Bin Temp (C)') 
ylabel('Energy Usage (kW)') 
 
legend(leg,'HIYW') 
title([plottitle2 ' City #' num2str(cityset)]) 
 
% final energy calculation 
% integrated over bin for yearly 
yearlyEnergy  %subroutine 
%fig (4) yearly ratio of HIYW/3TFA 
save rHIYW.txt  YearlyHIYW -ascii 
save r3TFA.txt  YearlyTTFA -ascii 
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