20 research outputs found

    A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat

    Get PDF
    Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of L-arabinose linked to 2 D-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining D-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked D-glucose molecule to L-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked D-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants

    Progranulin deficiency suppresses allergic asthma and enhances efferocytosis via PPARā€Ī³/MFGā€E8 regulation in macrophages

    No full text
    Abstract Efferocytosis can resolve airway inflammation and enhance airway tolerance in allergic asthma. While previous work has reported that progranulin (PGRN) regulated macrophage efferocytosis, but it is unclear whether PGRNā€mediated efferocytosis is associated with asthma. Here, we found that in an ovalbumin (OVA)ā€induced allergic asthma model, the airway inflammation was suppressed and the apoptosis in lung tissues was ameliorated in PGRNā€deficient mice. In contrast, PGRN knockdown in human bronchial epithelial cellsĀ increased apoptosis in vitro. Furthermore, PGRNā€deficient macrophages had significantly stronger efferocytosis ability than wild type (WT) macrophages both in vitro and in vivo. PGRNā€deficient peritoneal macrophages (PMs) exhibited increased expression of genes associated with efferocytosis including milk fat globuleā€epidermal growth factor 8 (MFGā€E8), peroxisome proliferatorā€activated receptor gamma (PPARā€Ī³) and sirtuin1 (SIRT1) and increased capacity to produce the antiā€inflammatory mediator interleukin (IL)ā€10 during efferocytosis. GW9662, the inhibitor of PPARā€Ī³, abolished increased efferocytosis and MFGā€E8 expression in PGRNā€deficient PMs suggesting that PGRN deficiency enhanced MFGā€E8ā€mediated efferocytosis through PPARā€Ī³. Correspondingly, efferocytosis genes were increased in the lungs of OVAā€induced PGRNā€deficient mice. GW9662 treatment reduced MFGā€E8 expression but did not significantly affect airway inflammation. Our results demonstrated that PGRN deficiency enhanced efferocytosis via the PPARā€Ī³/MFGā€E8 pathway and this may be one of the reasons PGRN deficiency results in inhibition of airway inflammation in allergic asthma

    Identification of Two Lpp20 CD4+ T Cell Epitopes in Helicobacter pylori-Infected Subjects

    No full text
    Antigen-specific CD4+ T cells play an essential role in effective immunity against Helicobacter pylori (H. pylori) infection. Lpp20, a conserved lipoprotein of H. pylori, has been investigated as one of major protective antigens for vaccination strategies. Our previous study identified two H-2d-restricted CD4+ T cell epitopes within Lpp20 and an epitope vaccine based on these epitopes was constructed, which protected mice in prophylactic and therapeutic vaccination against H. pylori infection. Immunodominant CD4+ T cell response is an important feature of antiviral, antibacterial, and antitumor cellular immunity. However, while many immunodominant HLA-restricted CD4+ T cell epitopes of H. pylori protective antigens have been identified, immunodominant HLA-restricted Lpp20 CD4+ T cell epitope has not been elucidated. In this study, a systematic method was used to comprehensively evaluate the immunodominant Lpp20-specific CD4+ T cell response in H. pylori-infected patients. Using in vitro recombinant Lpp20 (rLpp20)-specific expanded T cell lines from H. pylori-infected subjects and 27 18mer overlapping synthetic peptides spanned the whole Lpp20 protein, we have shown that L55ā€“72 and L79ā€“96 harbored dominant epitopes for CD4+ T cell responses. Then the core sequence within these two 18mer dominant epitopes was screened by various extended or truncated 13mer peptides. The immunodominant epitope was mapped to L57ā€“69 and L83ā€“95. Various Epstein-Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCLs) with different HLA alleles were used as antigen presenting cell (APC) to present peptides to CD4+ T cells. The restriction molecules were determined by HLA class-antibody blocking. L57ā€“69 was restricted by DRB1-1501 and L83ā€“95 by DRB1-1602. The epitopes were recognized on autologous dendritic cells (DCs) loaded with rLpp20 but also those pulsed with whole cell lysates of H. pylori (HP-WCL), suggesting that these epitopes are naturally processed and presented by APC. CD4+ T cells were isolated from H. pylori-infected patients and stimulated with L57ā€“69 and L83ā€“95. These two epitopes were able to stimulate CD4+ T cell proliferation. This study may be of value for the future development of potential H. pylori vaccine

    Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome

    No full text
    Miscanthus, a rhizomatous perennial plant, has great potential for bioenergy production for its high biomass and stress tolerance. We report a chromosome-scale assembly of Miscanthus lutarioriparius genome by combining Oxford Nanopore sequencing and Hi-C technologies. The 2.07-Gb assembly covers 96.64% of the genome, with contig N50 of 1.71Mb. The centromere and telomere sequences are assembled for all 19 chromosomes and chromosome 10, respectively. Allotetraploid origin of the M. lutarioriparius is confirmed using centromeric satellite repeats. The tetraploid genome structure and several chromosomal rearrangements relative to sorghum are clearly demonstrated. Tandem duplicate genes of M. lutarioriparius are functional enriched not only in terms related to stress response, but cell wall biosynthesis. Gene families related to disease resistance, cell wall biosynthesis and metal ion transport are greatly expanded and evolved. The expansion of these families may be an important genomic basis for the enhancement of remarkable traits of M. lutarioriparius. The genus Miscanthus has great potential for bio-energy production due to its high biomass yield and strong stress resistance. Here, the authors report the genome assembly of the diploid M. lutarioriparius, showing it has an allotetraploid origin and an expanded number of genes in families related to stress resistance

    Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies

    No full text
    As one of the most important and advanced technology for carbon-mitigation in the building sector, building performance simulation (BPS) has played an increasingly important role with the powerful support of building energy modelling (BEM) technology for energy-efficient designs, operations, and retrofitting of buildings. Owing to its deep integration of multi-disciplinary approaches, the researchers, as well as tool developers and practitioners, are facing opportunities and challenges during the application of BEM at multiple scales and stages, e.g., building/system/community levels and planning/design/operation stages. By reviewing recent studies, this paper aims to provide a clear picture of how BEM performs in solving different research questions on varied scales of building phase and spatial resolution, with a focus on the objectives and frameworks, modelling methods and tools, applicability and transferability. To guide future applications of BEM for performance-driven building energy management, we classified the current research trends and future research opportunities into five topics that span through different stages and levels: (1) Simulation for performance-driven design for new building and retrofit design, (2) Model-based operational performance optimization, (3) Integrated simulation using data measurements for digital twin, (4) Building simulation supporting urban energy planning, and (5) Modelling of building-to-grid interaction for demand response. Additionally, future research recommendations are discussed, covering potential applications of BEM through integration with occupancy and behaviour modelling, integration with machine learning, quantification of model uncertainties, and linking to building monitoring systems

    Genetic Control of a Transition from Black to Straw-White Seed Hull in Rice Domestication1[C][W][OA]

    No full text
    The genetic mechanism involved in a transition from the black-colored seed hull of the ancestral wild rice (Oryza rufipogon and Oryza nivara) to the straw-white seed hull of cultivated rice (Oryza sativa) during grain ripening remains unknown. We report that the black hull of O. rufipogon was controlled by the Black hull4 (Bh4) gene, which was fine-mapped to an 8.8-kb region on rice chromosome 4 using a cross between O. rufipogon W1943 (black hull) and O. sativa indica cv Guangluai 4 (straw-white hull). Bh4 encodes an amino acid transporter. A 22-bp deletion within exon 3 of the bh4 variant disrupted the Bh4 function, leading to the straw-white hull in cultivated rice. Transgenic study indicated that Bh4 could restore the black pigment on hulls in cv Guangluai 4 and Kasalath. Bh4 sequence alignment of all taxa with the outgroup Oryza barthii showed that the wild rice maintained comparable levels of nucleotide diversity that were about 70 times higher than those in the cultivated rice. The results from the maximum likelihood Hudson-Kreitman-Aguade test suggested that the significant reduction in nucleotide diversity in rice cultivars could be caused by artificial selection. We propose that the straw-white hull was selected as an important visual phenotype of nonshattered grains during rice domestication
    corecore