26 research outputs found

    Possible identifications of the 3.4 micrometer feature

    Get PDF
    A feature at 3.4 micrometer was first detected in Comet Halley by the IKS spectrometer on board the Vega 1 probe; and subsequently from the ground. The feature has since been reported in Comet Wilson. The presence of the feature is of considerable interest for a number of reasons. First, it may represent the detection of a new parent molecule, and when combined with data from Giotto and Vega yield new information on cometary chemistry and the early solar system composition. Secondly, it may represent a link to the interstellar medium, the feature corresponds in wavelength and shape with an interstellar feature seen in absorption in a luminous star, towards the Galactic center known as GC-IRS7. The feature in turn is thought to be related with a growing family of unidentified infrared emission features seen in stellar objects, planetary nebulae, reflection nebulae, HII regions and extra galactic sources. These features occur at wavelengths 3.3, 3.4, 3.5, 6.2, 7.7, 8.6, and 11.25 micrometers. Further identification theory is given

    Neutral gas and diffuse interstellar bands in the LMC

    Get PDF
    Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included

    A Group of Red, Ly-alpha Emitting, High Redshift Galaxies

    Full text link
    We have discovered two new high redshift (z=2.38) galaxies, near the previously known z=2.38 galaxy 2139-4434 B1 (Francis et al. 1996). All three galaxies are strong Ly-alpha emitters, and have much redder continuum colors (I-K about 5) than other optically-selected high redshift galaxies. We hypothesize that these three galaxies are QSO IIs; radio-quiet counterparts of high redshift radio galaxies, containing concealed QSO nuclei. The red colors are most easily modelled by an old (> 0.5 Gyr), massive (> 10E11 solar masses) stellar population. If true, this implies that at least one galaxy cluster of mass much greater than 3E11 solar masses had collapsed before redshift five.Comment: 12 pages, 2 figures, uses aaspp4 style file. Accepted for publication in Astrophysical Journal Letter

    Galaxy Clusters and Large Scale Structure at High Redshifts

    Get PDF
    We present a detailed study of a rich galaxy cluster at z=2.38. We demonstrate that this cluster contains large overdensities of damped Ly-alpha absorption lines, of Ly-alpha emitting galaxies and of extremely red objects. The overdensity of extremely red objects in this field demonstrates that many are high z galaxies. The huge overdensities we measure for these three classes of object are much larger than the mass overdensities of typical clusters at this redshift, as predicted by CDM and related models. We suggest therefore that the distribution of damped Ly-alpha absorption line systems, of Ly-alpha emitting galaxies and of extremely red objects are all very strongly biassed, and that somehow a small overdensity of mass has increased the fraction of baryons in collapsed objects, in the volume occupied by the cluster, to close to unity (a factor of ~10 increase). We speculate that some unknown physical process, acting on the volume occupied by our cluster, caused the normally diffuse ionised inter-galactic medium to coalesce into small (< 10^8 Solar masses) blobs of neutral hydrogen, which produce the Ly-alpha absorption-lines. Star formation occurred within these blobs at z>5, enriching them with metals and producing stars, which after several mergers and ~ 0.5 Gyr of passive evolution form the extremely red objects. The Ly-alpha emitting galaxies are probably AGN, triggered perhaps by mergers of the small blobs.Comment: Invited talk to appear in "The Young Universe", proceedings of Rome conference, ed. D'Odorico, Fontana and Giallongo. 8 pages, uses paspconf.st

    The Distance to the Vela Supernova Remnant

    Get PDF
    We have obtained high resolution Ca II and Na I absorption line spectra toward 68 OB stars in the direction of the Vela Supernova Remnant. The stars lie at distances of 190 -- 2800 pc as determined by Hipparcos and spectroscopic parallax estimations. The presence of high velocity absorption attributable to the remnant along some of the sight lines constrains the remnant distance to 250+/-30 pc. This distance is consistent with several recent investigations that suggest that the canonical remnant distance of 500 pc is too large.Comment: To be published in The Astrophysical Journal Letters Figure 1 y-axis labels correcte

    HST STIS spectroscopy of the triple nucleus of M31: two nested disks in Keplerian rotation around a Supermassive Black Hole

    Get PDF
    We present HST spectroscopy of the nucleus of M31 obtained with STIS. Spectra taken around the CaT lines at 8500 see only the red giants in the double bright- ness peaks P1 and P2. In contrast, spectra taken at 3600-5100 A are sensitive to the tiny blue nucleus embedded in P2, the lower surface brightness red nucleus. P2 has a K-type spectrum, but the embedded blue nucleus has an A-type spectrum with strong Balmer absorption lines. Given the small likelihood for stellar collisions, a 200 Myr old starburst appears to be the most plausible origin of the blue nucleus. In stellar population, size, and velocity dispersion, the blue nucleus is so different from P1 and P2 that we call it P3. The line-of-sight velocity distributions of the red stars in P1+P2 strengthen the support for Tremaine s eccentric disk model. The kinematics of P3 is consistent with a circular stellar disk in Keplerian rotation around a super-massive black hole with M_bh = 1.4 x 10^8 M_sun. The P3 and the P1+P2 disks rotate in the same sense and are almost coplanar. The observed velocity dispersion of P3 is due to blurred rotation and has a maximum value of sigma = 1183+-201 km/s. The observed peak rotation velocity of P3 is V = 618+-81 km/s at radius 0.05" = 0.19 pc corresponding to a circular rotation velocity at this radius of ~1700 km/s. Any dark star cluster alternative to a black hole must have a half-mass radius <= 0.03" = 0.11 pc. We show that this excludes clusters of brown dwarfs or dead stars on astrophysical grounds.Comment: Astrophysical Journal, Sep 20, 2005, 21 pages including 20 figure

    UV Absorption Lines from High-Velocity Gas in the Vela Supernova Remnant: New insights from STIS Echelle Observations of HD72089

    Get PDF
    The star HD72089 is located behind the Vela supernova remnant and shows a complex array of high and low velocity interstellar absorption features arising from shocked clouds. A spectrum of this star was recorded over the wavelength range 1196.4 to 1397.2 Angstroms at a resolving power lambda/Delta lambda = 110,000 and signal-to-noise ratio of 32 by STIS on the Hubble Space Telescope. We have identified 7 narrow components of C I and have measured their relative populations in excited fine-structure levels. Broader features at heliocentric velocities ranging from -70 to +130 km/s are seen in C II, N I, O I, Si II, S II and Ni II. In the high-velocity components, the unusually low abundances of N I and O I, relative to S II and Si II, suggest that these elements may be preferentially ionized to higher stages by radiation from hot gas immediately behind the shock fronts.Comment: 11 pages, 2 figures, Latex. Submitted for the special HST ERO issue of the Astrophysical Journal Letter

    A Pair of Compact Red Galaxies at Redshift 2.38, Immersed in a 100 kpc Scale Ly-alpha Nebula

    Full text link
    We present Hubble Space Telescope (HST) and ground-based observations of a pair of galaxies at redshift 2.38, which are collectively known as 2142-4420 B1 (Francis et al. 1996). The two galaxies are both luminous extremely red objects (EROs), separated by 0.8 arcsec. They are embedded within a 100 kpc scale diffuse Ly-alpha nebula (or blob) of luminosity ~10^44 erg/s. The radial profiles and colors of both red objects are most naturally explained if they are young elliptical galaxies: the most distant yet found. It is not, however, possible to rule out a model in which they are abnormally compact, extremely dusty starbursting disk galaxies. If they are elliptical galaxies, their stellar populations have inferred masses of ~10^11 solar masses and ages of ~7x10^8 years. Both galaxies have color gradients: their centers are significantly bluer than their outer regions. The surface brightness of both galaxies is roughly an order of magnitude greater than would be predicted by the Kormendy relation. A chain of diffuse star formation extending 1 arcsec from the galaxies may be evidence that they are interacting or merging. The Ly-alpha nebula surrounding the galaxies shows apparent velocity substructure of amplitude ~ 700 km/s. We propose that the Ly-alpha emission from this nebula may be produced by fast shocks, powered either by a galactic superwind or by the release of gravitational potential energy.Comment: 33 pages, 9 figures, ApJ in press (to appear in Jun 10 issue

    On the Nature of Red Galaxies in the Early Universe

    No full text
    Increasing numbers of extremely red galaxies are being found in the high redshift universe. We present accurate near-IR photometry and NICMOS imaging for one of these galaxies, and demonstrate that it is a merging pair of early type galaxies. The merger is triggering only very moderate rates of star formation: even after many such mergers, the dominant stellar population will be old. This suggests that hierarchical formation models for elliptical galaxies can work

    Discovery of a Cluster of Elliptical Galaxies at Redshift 2.38

    No full text
    The author was affiliated with University of Melbourne when the paper was published
    corecore