18 research outputs found

    A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm

    Get PDF
    © 2020 Introduction: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. Methods: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. Results: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. Discussion: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment

    Plasma Membrane Plasticity of Xenopus laevis Oocyte Imaged with Atomic Force Microscopy

    Get PDF
    Proteins are known to form functional clusters in plasma membranes. In order to identify individual proteins within clusters we developed a method to visualize by atomic force microscopy (AFM) the cytoplasmic surface of native plasma membrane, excised from Xenopus laevis oocyte and spread on poly-L-lysine coated glass. After removal of the vitelline membrane intact oocytes were brought in contact with coated glass and then rolled off. Inside-out oriented plasma membrane patches left at the glass surface were first identified with the lipid fluorescent marker FM1-43 and then scanned by AFM. Membrane patches exhibiting the typical phospholipid bilayer height of 5 nm showed multiple proteins, protruding from the inner surface of the membrane, with heights of 5 to 20 nm. Modelling plasma membrane proteins as spherical structures embedded in the lipid bilayer and protruding into the cytoplasm allowed an estimation of the respective molecular masses. Proteins ranged from 35 to 2,000 kDa with a peak value of 280 kDa. The most frequently found membrane protein structure (40/μm2) had a total height of 10 nm and an estimated molecular mass of 280 kDa. Membrane proteins were found firmly attached to the poly-L-lysine coated glass surface while the lipid bilayer was found highly mobile. We detected protein structures with distinguishable subunits of still unknown identity. Since X. laevis oocyte is a generally accepted expression system for foreign proteins, this method could turn out to be useful to structurally identify specific proteins in their native environment at the molecular level.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
    corecore