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A B S T R A C T

Introduction: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of
different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being
discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more
systematic approach to estimate the hERG block potency and safety margin is needed.
Methods: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A
Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability.
A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates.
Results: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored
based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used.
Discussion: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsa-
dogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other
information to form a more comprehensive risk assessment.
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1. Introduction

The cardiac action potential is regulated by the electrical current
flows of ions across cardiomyocyte membranes. Many drugs can bind to
ion channels, block ionic flow and disrupt the regulation of the action
potential, leading to a drug-induced arrhythmia, or “proarrhythmia”
(Friedman and Stevenson, 1998). A particularly dangerous type of
proarrhythmia is known as “Torsade de Pointes,” or TdP, which is a rare
ventricular tachycardia with a potential to cause sudden cardiac death
(Roden, 2008). The ion channel of greatest interest to the identification
of TdP risk is the Kv11.1 potassium channel, which is encoded by hERG
(human ether-a-go-go related gene) and carries the rapidly activating
delayed rectifier potassium current (IKr) (Vandenberg et al., 2012).
Block of the hERG channel results in a reduction of IKr and repolariza-
tion reserve (Roden, 1998), and in turn may lead to QT prolongation
and TdP (Nachimuthu et al., 2012). Although IKr is one of the most
prominent repolarizing currents, other cardiac currents also contribute
to repolarization (Roden, 1998). Based on this more comprehensive
understanding of cardiac electrophysiology and cellular mechanisms of
TdP, the Comprehensive in vitro Proarrhythmia Assay (CiPA) was
proposed to integrate multi-ion channel pharmacology measured in
vitro into experimentally-parameterized in silico models to assess TdP
risk (Sager et al., 2014). The progress made by the CiPA Initiative and
other similar projects worldwide have led to the formation of an In-
ternational Council for Harmonisation (ICH) Implementation Working
Group to develop Questions & Answers (Q&As) for ICH S7B (non-
clinical) and E14 (clinical) guidelines (Questions and Answers, 2018).

This upcoming new international cardiac safety paradigm may fa-
cilitate the use of nonclinical data as part of an integrated risk assess-
ment strategy to inform clinical decision making. Two types of non-
clinical approaches have been used in cardiac safety assessment. One
type focuses solely on quantifying block of the hERG channel, as this is
the most common ionic basis for TdP (Redfern et al., 2003). The other
uses a more comprehensive platform (such as in silico models with
multi-ion channel in vitro data (Kramer et al., 2013; Abbasi et al.,
2017), induced pluripotent stem cell (iPS)-derived cardiomyocytes
(Ando et al., 2017), or in vivo/ex vivo systems (Champeroux et al.,
2005)) to quantify the pharmacological effects on the cardiac system.
While the latter can be regarded as proarrhythmia risk prediction
models and typically produce a metric (such as a numerical score or
qualitative classification) to predict the risk, the former usually try to
identify a “safety margin” threshold, where safety margin is defined as
the ratio of the half inhibitory concentration,IC50, for hERG inhibition
to the maximum free therapeutic concentration, Cmax

free, of the drug.
The assumption is that above the safety margin threshold, the com-
pound is not likely to induce TdP (Redfern et al., 2003).

There have been previous attempts to relate hERG safety margin to
TdP risk (Wallis, 2010). However, several confounding factors make it
difficult to interpret these past findings. First, these investigations
(Redfern et al., 2003; De Bruin et al., 2005; Gintant, 2011; Webster
et al., 2002) pooled together drug potency data from vastly different
experimental conditions (voltage protocol, temperature, native vs.
heterologous systems, etc.). As the results of in vitro ion channel patch
clamp assays are sensitive to these conditions (Kirsch et al., 2004; Lee
et al., 2019), the inconsistent data used in these studies renders their
proposed safety margin thresholds of dubious validity. Second, some
studies used clinical QTc prolongation as the endpoint (Gintant, 2011;
Webster et al., 2002). Since the real concern is TdP, the use of a sur-
rogate marker limits the use of the proposed safety margin threshold.
Third, no uncertainty quantification was done in these studies, and all
results are point estimates. The use of a single point estimate may be
acceptable for early stage drug screening studies. For late-stage reg-
ulatory risk assessment, however, the uncertainty in the data must be
accounted for. Lastly, all these studies defined safety margin using
hERG IC50 as the drug potency parameter. This prevented the use of
such a strategy on drugs for which an accurate measurement of IC50 is

not possible, for instance due to solubility issues.
Under the CiPA Initiative, a systematic strategy was developed to

address the above issues. A standardized voltage protocol was used in
measurements of 28 CiPA drugs with known clinical TdP risk at several
globally-distributed facilities (“sites”). All sites used high throughput
(HTS) automated patch-clamp systems, though not necessarily the same
type of devices. The data were generated in a blinded fashion by each
site, and then collected for centralized de-blinding and data analysis. A
rigorous statistical method was applied to account for inter- and intra-
site variability. A method was also developed to calculate the block
potency using not only IC50, but also lower inhibitory concentrations
(such as IC10, IC20) to accommodate for those drugs with solubility
issue. Based on the estimated posterior distributions of hERG potency of
the 28 drugs, the relationship between choosing a specific safety margin
threshold and making an error in TdP risk classification (false positive
and negative rates) is explored. Finally, a modeling and simulation
study was used to highlight the fact that any hERG block potency es-
timation depends on the experimental temperature and the particular
voltage protocol used.

2. Methods

2.1. Pharmacology and electrophysiology

The CiPA Initiative organized a panel of facilities with HTS systems
to participate in a multi-site study coordinated by the Health and
Environmental Sciences Institute (HESI). The study was conducted in
two phases (phase 1 for 12 CiPA training drugs and phase 2 for 16 CiPA
validation drugs) and not all sites participated in both phases. The 28
drugs were categorized into High, Intermediate, or Low TdP risk classes
by a dedicated CiPA team (Colatsky et al., 2016). While training and
validation data sets were needed for the development of CiPA in silico
models (Chang et al., 2017; Dutta et al., 2017; Li et al., 2017; Li et al.,
2018), such a division is not needed here. Therefore, the two data sets
were unified in this study. Dose-response data for several other ion
channels and physiological temperature was also collected as part of the
study, but only the ambient temperature hERG data was analyzed here.
The identities of the participating sites were masked by numerical in-
dicators. A centralized procedure was taken where all 28 drugs were
purchased and prepared into stock solutions by a single laboratory
outside of the participating sites. The identities and concentrations of
the stock solutions were masked. Each site received a blinded aliquot of
the stock solutions. Instructions were provided for making serial dilu-
tions from each stock solution. The sites performed their hERG assays
without knowing the identities or concentrations of the compounds.
The unblinded drug names and concentrations, along with the mea-
sured block percentage for each cell, are available along with this
publication at https://github.com/FDA/CiPA/tree/System-
atic_Strategy_hERG_Block_2020.

The sources of the 28 CiPA drugs are as follows. For Phase 1, all
drugs were purchased from Millipore Sigma (St. Louis, MO), formulated
in 100% DMSO, blinded and shipped frozen to collaborator testing
sites. All stocks were prepared at 1000× concentration to be tested, to
limit final DMSO exposure upon preparation of serial dilutions to 0.1%
in each assay. For Phase 2, blinded drug powder with instruction for
formulation of stock solutions was sent to the sites by the
Chemotherapeutic Agents Repository of the National Cancer Institute
and stored at −20 °C until the day of testing.

The CiPA step-ramp protocol was used as the standard protocol
across sites. It involves a pulse pattern, repeated every 5 s, consisting of
a depolarization to 40 mV amplitude for a 500 ms duration, followed by
a ramp (1.2 V/s) to −80 mV for 100 ms. The holding potential is
−80 mV. Peak tail current is measured during the ramp. Site-specific
parameters, such as cell lines, buffers, HTS platforms, can be found in
Supplementary Materials. The details of the action potential waveform
protocol can be found in a previous publication (Sheng et al., 2017).
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2.2. Bayesian hierarchical model to analyze multi-site data

We used a Bayesian hierarchical model (BHM) similar to that used
by Johnstone et al. for analysis of ion channel dose-response data
(Johnstone et al., 2016). The distribution of a logarithmic transforma-
tion of the IC50 for the jth site (denoted by pIC50j) across all sites was
assumed to follow a logistic distribution. Similarly, the site-specific Hill
coefficients (hj) across all sites were assumed to follow a log-logistic
distribution. The hyperparameters controlling these distributions (inter-
site variability), along with site-specific probability distributions of IC50
(and Hill coefficients) within each site (intra-site variability), are esti-
mated through a Markov Chain Monte Carlo (MCMC) process using the
Metropolis-Hastings algorithm. In-house developed R scripts using the
FME package (https://cran.r-project.org/web/packages/FME/index.
html) were run on the FDA's High Performance Computing cluster to
execute the algorithms. A discussion of the prior information, bounds
on the parameters, and implementation details can be found in the
Supplementary Methods.

2.3. Modeling and simulation method for predicting the effect different
voltage protocols have on hERG block potency estimates

The hERG dynamic model previously developed for CiPA (Li
et al., 2017) was used to simulate drug effects on the hERG channel
using various input voltage protocols. The drug-specific kinetic
parameters were estimated by fitting to time-dependent fractional
block data from a modified Milnes protocol (Milnes et al., 2010). A
quality criterium was applied to select only those cells with less than
20% background current, where the background current was mea-
sured by applying 0.5 μM E-4031 to the cell at the end of each ex-
periment. A bootstrapping procedure was used to quantify the un-
certainty in the drug-specific kinetic binding parameters. This

generated 2000 sets of kinetic binding parameters for each drug,
which provides a numerical approximation of the true joint dis-
tribution (Chang et al., 2017). For each drug, the 2000 sets of
parameters were used to perform 2000 simulations for a particular
voltage protocol across 10 concentrations. The concentrations were
chosen to span a wide range of block for each drug. For each drug
and voltage protocol, this gave a simulated dose-response dataset of
2000 predicted block values for each of the ten different con-
centrations. The joint probability distribution of IC50s and Hill
coefficients for each drug was found by applying Markov-chain
Monte Carlo to the simulated dose-response data. The likelihood
function assumed the mean block is normally distributed with the
mean equal to the block predicted by the Hill equation, and error
about the mean described by a drug-specific variance term. Hill
coefficient was bounded between 0.5 and 2.0, which was the range
obtained by previous investigators after examination a large amount
of HTS dose-response data (see (Elkins et al., 2013) and Supple-
mentary Methods for details). The raw patch clamp data obtained
from the Milnes protocol, code, fitted hERG kinetic drug binding
parameters, and simulated dose-response curves can be all found at
https://github.com/FDA/CiPA/tree/ Systematic_Strategy_hERG_-
Block_2020. We note to the reader that the hERG model uses an Emax
model to assume a saturating maximum drug effect (Li et al., 2017).
As a consequence, the Hill equation used to fit the simulated dose-
response data was slightly altered to account for a maximum block
effect (Bmax). This is similar to a modified Hill equation used to in-
troduce an Imax effect. Details can be found in the Supplementary
Methods and in reference (Mistry, 2018). Of note the Bmax term was
only used to estimate hERG potency from simulated dose-response
dataset. It was not used when estimating hERG potency from real
experimental data through BHM.

… … … …

Dose-Response Experimental Observations for hERG Block from Multiple Sites

System-specific Hill for
  Site N 
with intra-site variability

System-specific Hill for
  Site 1 

with intra-site variability

System-specific IC50 for 
 Site N 
with intra-site variability

System-specific IC50 for 
 Site 1 
with intra-site variability

Hyperparameters to control the 
distribution of system-specific Hills 

across sites (Inter-site variability)
Noise (observation error)

Hyperparameters to control the 
distribution of system-specific IC50s

across sites (Inter-site variability)

Hill coefficient prior informationNoise prior informationIC50 prior information

Fig. 1. The Bayesian Hierarchical Modeling (BHM) structure to quantitate both inter- and intra- site variability in multi-site hERG assay data.
A diagram depicting the structure of the BHM model to infer distributions of statistical parameters that give rise to the observed experimental data. The blue box at
the top is the “prior information,” which is prior knowledge or assumptions we have about the experimental systems. The green box corresponds to the distribution of
hyperparameters that control the system-specific IC50s and Hill coefficients across sites (inter-site variability). Similar to Johnstone et al. (Johnstone et al., 2016), we
assume IC50s and Hill coefficients for the same drug follow two distinct distributions across sites and hence are governed by two independent sets of hyperparameters
(see Supplementary Methods), although it is possible that there is some correlation between IC50s and Hill coefficients for the same drug across sites. The red box
corresponds to the distribution of site/system-specific parameters (IC50s and Hill coefficients) within each site (intra-site variability). Note that each site has its own
distribution of IC50s and Hill coefficients. Site 1 and Site N (the last site) were shown with other sites being represented by ellipsis. The purple box at the bottom is the
set of all experimental observations provided by all sides. Of note, the prior information for IC50 and Hill coefficient was deduced by following the approach of
Johnstone et al. (Johnstone et al., 2016) using HTS screening data with a large number of repeats (Elkins et al., 2013) (see Supplementary Methods for details). In
addition, for Hill coefficients we set a boundary between 0.5 and 2.0, after examining HTS screening data with large numbers of repeats (see Supplementary Methods
for details). For the prior information of measurement error or system noise, we used a uniform distribution for all sites, although in theory prior information about
system noise can be obtained for each site and used to further constrain the parameters. One of the hyperparameters in the green box (the location parameter μ, see
Supplementary Methods) corresponds to the mean of the IC50 distribution across sites. The probability distribution of μ reflects our uncertainty in estimating the
mean hERG block potency across sites, and will be used as each drug's IC50 distribution to calculate the safety margin distribution across sites. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Results

3.1. Multi-site hERG data from HTS using the CiPA step-ramp protocol

An initial examination of the multi-site hERG data using the same
standard voltage protocol suggests there are significant intra-site and
inter-site variabilities (Fig. S1 in Supplementary Materials).
Theoretically, intra-site variability may be mainly attributed to the
inherent randomness of the measurement (random measurement error
from the system and random variation of electrophysiological proper-
ties from cell to cell) while inter-site variability may largely stem from
systematic differences between sites (different platforms, cell lines, in-
ternal quality control, etc.). To account for both types of variability, we
adopted a Bayesian hierarchical modeling (BHM) approach (Johnstone
et al., 2016). The general idea behind BHM is to assume that, for any
drug, each site has its own specific hERG IC50 and Hill coefficients,
which are determined by the specific configuration of the experimental
system at that particular site. The variation of these system-specific (or
site-specific) IC50s and Hill coefficients across sites can be modeled as a
“higher level” distribution to quantify inter-site variability. Within each
individual site, the system-specific IC50 and Hill coefficient distributions
for each drug determine a “lower level” uncertainty in dose-response
relationships that characterize intra-site variability. The hyperpara-
meters that describe inter-site variability and the site-specific para-
meters that describe intra-site variability can be estimated from the
multi-site data, as shown as a diagram in Fig. 1. By applying this BHM
modeling strategy to the multi-site data, we derived joint distributions
of the site-specific parameters and hyperparameters for each of the 28
drugs. One of the hyperparameters μ (see Supplementary Methods),
which corresponds to the mean of the estimated IC50 distribution across
sites for each drug, is shown in Table 1.

Drugs with poor solubility or weakly interact with the hERG channel
often cannot attain close to 50% block in experimental practice. This
makes IC50 for such drugs difficult to estimate. To remedy this problem,
IC20 has been proposed as a substitute for IC50 to quantify hERG block
potency (Redfern et al., 2003; Wallis, 2010). Our proposed method
allows the calculation of low inhibitory concentrations (IC10, IC20, etc.)
after taking into consideration the experimental variability (Table 1 and
Supplementary Methods).

The high sensitivity of the hERG assay can be utilized to define a
safety margin threshold to minimize the likelihood of hERG block
mediated TdP risk, such as the study by Redfern et al. (Redfern et al.,
2003)) to define a threshold of 30 by finding an upper bound of IC50/
Cmax

free among drugs of considerable TdP liability. A caveat of this
approach is that any defined threshold suffers from false positive and
false negative rates, and previous studies focused on achieving high
sensitivity (low false negative rate) without considering a desired high
specificity (low false positive rate). We reasoned that different context
of use might place different weights on the tolerability of false positives
and false negatives, which would motivate using different thresholds.
Accordingly, the relationship between any chosen safety margin
threshold and the rates of false positive (probability of low TdP risk
drugs having the safety margin below the threshold) and false negative
(probability of high or intermediate TdP risk drugs having the safety
margin above the threshold) is explored based on the posterior prob-
ability distributions of the 28 drugs' hERG potency divided by their
Cmax

free (Li et al., 2017; Li et al., 2018) values (Fig. 2 and Supplementary
Methods). We observe the expected trend of a decreasing false negative
rate and an increasing false positive rate with increases in threshold.
For example, at a threshold of 300, the false negative rate is 2%, but the
false positive rate is 67%. When the threshold is moved to 30, the two
error rates are closer to each other (false negative and positive rates
27% and 33% respectively). A similar plot is given in Fig. 3 using IC20/
Cmax

free as safety margin.

3.2. Protocol-dependent hERG block potency estimations illustrated by
modeling and simulation studies

One major confounding factor in the hERG potency estimation,
which is relatively well controlled in this but not in previous studies, is
protocol-dependent changes of IC50s. It has been well established that
the voltage protocol and temperature have significant impact on the
hERG assay results (Kirsch et al., 2004; Lee et al., 2019). But no sys-
tematic study has been performed to investigate the effect of different
voltage protocols on hERG potency estimation. As experimental pro-
filing of such changes across many drugs and different protocols is time
consuming, we took advantage of an in silico hERG model that has been
parameterized by a dynamic protocol to estimate drug binding kinetic
parameters (Li et al., 2017). By using this model, we were able to si-
mulate three distinct voltage protocols to predict what potency values
we might get from these protocols across all 28 CiPA drugs (Fig. 4). As
the hERG model was parameterized by dynamic data collected at
physiological temperature by a single laboratory, the predicted IC50s
could be regarded as theoretical system-specific IC50s at 37 °C with
intra-site variability from a single site. The three protocols were picked
because they represent the standard CiPA hERG step-ramp protocol
(0.2 Hz) (Li et al., 2018), a slower CiPA step-ramp protocol (0.03 Hz),
and an action potential wave form protocol to mimic bradycardia
(0.5 Hz) (Sheng et al., 2017). Before using the model for all drugs, a
preliminary experiment suggests our model can predict frequency-de-
pendent drug block reasonably well (Supplementary Fig. S2).

A comparison of the predicted IC50s across the three protocols for all
CiPA drugs is shown in Table 2. As expected, different drugs have dif-
ferent change of potency in response to protocol or frequency changes.
With the same CiPA protocol, some drugs that are trapped within the
closed hERG channel during protocol intervals (e.g. bepridil (Li et al.,

Table 1
IC50 and IC20 values for the CiPA drugs after incorporating inter- and intra- site
uncertainty using a Bayesian Hierarchical Model (BHM).

Drug Risk IC20, BHM [nM] IC50, BHM [nM]

vandetanib high 73 (58–91) 394 (330–472)
sotalol high 5.4E4 (3.8E4–7.8E4) 2.9E5 (2.1E5 - 4E5)
quinidine high 223 (175–280) 971 (791–1.2E3)
ibutilide high 3.9 (2.4–6.5) 11 (6.5–17)
dofetilide high 17 (10–28) 75 (50–117)
disopyramide high 991 (453–2.3E3) 4.7E3 (2.6E3–9.3E3)
bepridil high 48 (39–57) 144 (120–172)
azimilide high 86 (67–109) 380 (303–476)
terfenadine inter. 43 (33–55) 129 (103–159)
risperidone inter. 109 (70–167) 451 (308–646)
pimozide inter. 4.6 (2.7–7.7) 19 (13–29)
ondansetron inter. 288 (225–378) 1.2E3 (930–1.6E3)
droperidol inter. 34 (26–44) 118 (96–148)
domperidone inter. 21 (14–32) 74 (52–106)
clozapine inter. 371 (248–570) 1.5E3 (952–2.3E3)
clarithromycin inter. 2.4E4 (1E4–5.3E4) 1.5E5 (7.2E4–3.1E5)
cisapride inter. 13 (10–17) 56 (44–72)
chlorpromazine inter. 244 (160–395) 650 (441–1.1E3)
astemizole inter. 4.6 (2.5–8) 19 (11−32)
verapamil low 129 (99–166) 452 (343–599)
tamoxifen low 545 (410–722) 1.7E3 (1.3E3–2.3E3)
ranolazine low 1.9E3 (1.5E3–2.3E3) 8.3E3 (6.6E3–1E4)
nitrendipine low 3.7E3 (2.3E3–6.1E3) 2E4 (1.3E4–2.9E4)
nifedipine low 1.6E4 (1E4–2.5E4) 7.1E4 (4.6E4–1.1E5)
mexiletine low 1.1E4 (9.1E3–1.2E4) 5.3E4 (4.7E4–6.1E4)
metoprolol low 2.5E4 (1.6E4–3.7E4) 1.1E5 (7.5E4–1.7E5)
loratadine low 254 (147–473) 1.3E3 (825–2.3E3)
diltiazem low 2.1E3 (1.6E3–2.6E3) 9.9E3 (7.9E3–1.2E4)

The hERG assay data for 28 CiPA drugs across multiple sites using high
throughput automated patch clamp systems were collected and subjected to a
BHM as depicted in Fig. 1. The lower boundary, median, and upper boundary of
the 95% credible intervals (CI) of the mean IC50s and IC20s across sites for all
drugs are shown. Units are in nM.
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2017)) have essentially the same IC50s when varying the frequency
from 0.2 Hz to 0.03 Hz. Some highly trapped drugs (e.g. dofetilide (Li
et al., 2017)) even have higher block potency (lower IC50) at slower
(0.03 Hz) compared to higher (0.2 Hz) frequency for the same CiPA
protocol, illustrating the so called reverse frequency dependent
blocking as previously reported (Thomas et al., 2003). By contrast,
some less trapped drugs, such as cisapride (Li et al., 2017), have fre-
quency dependent blocking as their hERG block potency is higher (the
IC50 is lower) at higher frequency. Other than the tendency of trapping,
drug binding rate also plays a role. For instance, terfenadine and on-
dansetron are two drugs with similar tendency of trapping, and yet
quite different binding rates (Li et al., 2017). The slower-binder terfe-
nadine has an over two-fold decrease in block potency (increase in
IC50s) when the CiPA step-ramp protocol frequency is decreased from
0.2 Hz to 0.03 Hz. In contrast the fast-binder ondansetron has almost
the same level of block potency when frequencies change. These results
show that hERG potency estimates depend strongly on the applied
voltage protocol. Therefore, any proposed safety margin only has sci-
entific validity when it is in reference to a specific voltage protocol.

4. Discussion

In this study, we developed a systematic approach to estimate hERG
block potency for TdP liability assessment. This strategy aims at ad-
dressing four issues associated with previous studies: the use of het-
erogenous experimental conditions (voltage protocols and tempera-
tures), the ambiguity in the endpoint (TdP vs QTc prolongation), the
lack of uncertainty quantification, and the inability to cover those drugs
that are difficult to estimate IC50s due to various reasons such as so-
lubility.

The standardization of experimental protocols was performed as
part of a cross-industry HTS automated patch clamp study coordinated
by HESI under the CiPA Initiative. The step-ramp protocol was chosen
as it is a simple approximation of the shape of a cardiac action poten-
tial. Some physiological temperature data were also collected by the
HESI study. As most of the data were at ambient temperature, we
decided to focus on room temperature data in this project to maximize
the coverage of participating sites for a more comprehensive under-
standing of inter-site variability. To make all sites' experimental con-
ditions as close as possible, not only the voltage protocol but also the
sources and concentrations of each compound are “standardized” (stock
solutions centrally prepared and then distributed) across sites. A
blinding procedure was also implemented to ensure an objective ap-
plication of the hERG assays at each site. The collected multi-site data
are an important resource to investigate “why” experimental vari-
abilities exist and identify the most important underlying factors, with
the goal of reducing lab-to-lab variability for future hERG assays. On the
other hand, the collected data also provide a resource to study “how” to
use current hERG assay data across industry, for example to define a
safety margin threshold after considering intra- and inter- site varia-
bility. While a manuscript for the former is being prepared, this docu-
ment represents our effort towards the latter application of the data.

The Bayesian hierarchical modeling approach allows us to quantify
intra-site and inter-site variability in a sound statistical framework. A
supplementary approach was also developed to define hERG block po-
tency using low inhibitory concentrations (IC20 etc.) to accommodate
those drugs with poor solubility or not enough block at highest con-
centrations. It should be noted that it may be difficult to calculate a
reasonable estimate of ICx if the drug in experimental practice cannot
achieve a block of at least x. For example, to calculate IC20 accurately

Fig. 2. Relationship between the choice of a
safety margin (IC50/Cmax

free) threshold and
the false positive and false negative rates for
TdP risk classification.
X axis: Any chosen safety margin threshold.
Y axis: the false negative (red) and false
positive (blue) rates associated with each
safety margin threshold. The false positive
rate is defined as the probability that a low
TdP risk drug will have a safety margin
below the threshold. The false negative rate
is the probability that an intermediate-risk
or high-risk drug will have a safety margin
above the threshold. Please see
Supplementary Methods for details. All
probabilities are based on the posterior
probability distributions of hERG potency
(IC50) of the 28 drugs divided by corre-
sponding Cmax

free. Three exemplar thresh-
olds and their associated false positive/ne-
gative rates are labeled: A threshold of 300
with very high sensitivity (very low false
negative rate) and low specificity (high
false positive rate), previously proposed
threshold of 45 by Gintant et al. (Gintant,
2011), and the threshold of 30 by Redfern
et al. (Redfern et al., 2003). (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
web version of this article.)
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the drug will need to achieve at least 20% block in the hERG assay at
highest tested concentrations.

Based on the posterior probability distributions of hERG potency
(IC50 or IC20) values as for the 28 drugs derived from BHM, we explored
the relationship between safety margin threshold, the false positive
rate, and the false negative rate for predicting TdP risk. Similar to
previous studies (Redfern et al., 2003; Gintant, 2011) we found that no
threshold could achieve both a low false positive rate (high specificity)
and low false negative rate (high sensitivity). With a higher threshold
(e.g. 300), the high sensitivity (0.98) and low specificity (0.33) give a
positive likelihood ratio of 1.5 (a torsadogenic drug is 1.5 times more
likely to be classified as torsadogenic compared to a non-torsadogenic
drug), and a negative likelihood ratio of 1/16.5 (a non-torsadogenic
drug is 16.5 times more likely to be classified as non-torsadogenic
compared to a torsadogenic drug), respectively. The lower threshold
(e.g. 30) gives a positive likelihood ratio of 2.2, and a negative like-
lihood ratio of 1/2.5, respectively. The classification performance from
either safety margin threshold is lower than the comprehensive in silico
model integrating multi-channel pharmacology (Li et al., 2018). This is
because the safety margin strategy only considers the hERG channel,
even though the interplay between multiple ion channels is needed to
regulate the action potential. This necessitates the need for compre-
hensive proarrhythmia risk prediction models that can properly ac-
count for the coupled effect of multiple cardiac ion channels. However,
under specific context of use, the safety margin strategy could still be
utilized. For example, during relatively early drug screening, a lower
threshold with a balanced tradeoff between the false positive and false

negative rates could quickly screen out many high-risk drugs to produce
a “short list” of promising candidates. At later development stage, a
higher threshold (lower false negative rate/higher sensitivity) could be
applied to determine which drugs have low probability of hERG block-
mediated TdP liability, and which ones may have enough concern and
warrant the use of more comprehensive models for accurate TdP risk
assessment.

There are notable limitations to our study. First, although we con-
sidered experimental variability of estimating hERG block potency in
our multi-site study, no uncertainty was associated with Cmax

free when
calculating the safety margin. This is due to the fact that there are very
few studies to establish methods to quantify the uncertainty in the es-
timation of plasma protein binding, a main factor behind the variability
of Cmax

free (Wang et al., 2014). Nevertheless, some factors of pharma-
cokinetic uncertainty did go into our calculation of Cmax

free. For ex-
ample, for terfenadine we used a median level of plasma concentration
after cytochrome P450 inhibition (Redfern et al., 2003) to account for
drug-drug interactions that may be responsible for terfenadine-medi-
ated TdP events. However, not all drugs in this study have enough data
to consider drug-drug interactions. In addition, it is known that the
metabolite of risperidone, paliperidone, prolongs the QTc interval in a
concentration-dependent manner (Suzuki et al., 2012) and that con-
centrations of this metabolite need to be taken into account for both
efficacy and cardiac repolarization. This is analogous to taking in to
account the increased exposure of terfenadine occurring in the presence
of a metabolic inhibitor, as done in this study. This emphasizes the need
to have a good understanding of the distribution, metabolism and

Fig. 3. Relationship between the choice of a safety margin (IC20/Cmax
free) threshold and the false positive and false negative rates for TdP risk classification.

This figure is the same as Fig. 2, but safety margin is defined as IC20/Cmax
free instead of IC50/Cmax

free. The three labeled thresholds (75, 11, and 7.5) are scaled from the
three IC50/Cmax

free-based thresholds (300, 45, and 30) assuming a Hill coefficient of 1.
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elimination of the compounds and any other contributing ion channel
effects from metabolites.

A second limitation is that we used model-predicted, rather than

experimentally measured, hERG block potency across protocols to
highlight protocol-dependent changes in IC50s. We did not attempt to
compare the predicted IC50s from our hERG model to experimentally

Fig. 4. Diagram of using modeling and simulation to illustrate protocol-dependent changes in hERG potency estimation.
The five panels in Fig. 4 above form a flowchart of the modeling & simulation process to predict protocol-dependent drug block dose response. In panel A, the CiPA
dynamic hERG protocol (Milnes protocol) was applied to the 28 CiPA drugs. The experimental electrical current (I, pA) vs. time (t, ms) data were fed into the CiPA hERG
model (Li et al., 2017) that accounts for drug binding kinetics (panel B) and then used to estimate the hERG binding parameters. A bootstrapping procedure (Chang et al.,
2017) generates a diverse population of 2000 samples each containing the set of five hERG binding parameters. To generate the dose-response curves, the 2000 model
parameters were fed into the CiPA hERG model, to simulate one of the three voltage protocols (voltage, [V, mV] vs. time [t, ms]) (panel C). For each protocol, 10 drug
concentrations covering a wide range were simulated and the predicted dose-response curves are shown in panel D. Markov-chain Monte Carlo (MCMC) sampling was
then used (Chang et al., 2017) to quantify the uncertainty in the dose response curves and generate a credible interval for IC50 and Hill coefficients (panel E).

Table 2
Predicted protocol-dependent IC50 estimates for the CiPA drugs.

Drug Risk Ramp (0.2 Hz) IC50, [nM] Ramp (0.03 Hz) IC50, [nM] AP (0.5 Hz) IC50, [nM]

vandetanib high 199 (197–200) 204 (202–206) 134 (133–135)
sotalol high 1.095E5 (1.09E5–1.101E5) 1.114E5 (1.106E5–1.121E5) 7.5E4 (7.47E4–7.52E4)
quinidine high 984 (982–986) 1.099E3 (1.094E3–1.104E3) 624 (623–625)
ibutilide high 5.47 (5.45–5.49) 3.41 (3.4–3.42) 4.62 (4.6–4.63)
dofetilide high 9.96 (9.93–9.99) 7.47 (7.45–7.49) 10.36 (10.33–10.38)
disopyramide high 1.71E3 (1.7E3–1.72E3) 1.99E3 (1.97E3–2E3) 1.248E3 (1.242E3–1.254E3)
bepridil high 97.3 (97–97.6) 110 (109–111) 70.4 (70.3–70.5)
azimilide high 257 (256–258) 237 (236–238) 132.7 (132.1–133.3)
terfenadine intermediate 127.8 (127.2–128.1) 394 (392–395) 54 (53.5–54.4)
risperidone intermediate 217 (215–219) 627 (622–633) 65 (64–67)
pimozide intermediate 1.56 (1.53–1.59) 4 (3.9–4.1) 0.92 (0.91–0.93)
ondansetron intermediate 1.265E3 (1.263E3–1.267E3) 1.31E3 (1.308E3–1.312E3) 967 (966–969)
droperidol intermediate 164 (163–165) 225 (224–227) 66.5 (65.9–67.1)
domperidone intermediate 68 (66–69) 75 (71–77) 39.8 (39.4–40.2)
clozapine intermediate 824 (821–826) 799 (796–802) 690 (689–692)
clarithromycin intermediate 1.76E4 (1.75E4–1.77E4) 1.78E4 (1.77E4–1.79E4) 1.27E4 (1.26E4–1.28E4)
cisapride intermediate 23.6 (23.5–23.7) 49.2 (48.8–49.5) 14.5 (14.4–14.6)
chlorpromazine intermediate 818 (817–819) 777 (776–778) 653 (652–654)
astemizole intermediate 7.34 (7.29–7.4) 4.3 (4.27–4.33) 6.62 (6.59–6.66)
verapamil low 620 (616–623) 589 (586–592) 422 (420–423)
tamoxifen low 553 (550–556) 537 (534–540) 431 (429–432)
ranolazine low 7.57E3 (7.55E3–7.59E3) 7.62E3 (7.61E3–7.64E3) 6.33E3 (6.32E3–6.34E3)
nitrendipine low 3.79E4 (3.78E4–3.81E4) 3.86E4 (3.85E4–3.87E4) 3.44E4 (3.42E4–3.45E4)
nifedipine low 3.67E5 (3.66E5–3.69E5) 3.92E5 (3.9E5–3.93E5) 3.52E5 (3.51E5–3.55E5)
mexiletine low 1.852E4 (1.849E4–1.855E4) 1.872E4 (1.87E4–1.874E4) 1.733E4 (1.73E4–1.736E4)
metoprolol low 2.07E4 (2.05E4–2.08E4) 2.09E4 (2.07E4–2.11E4) 2.1E4 (2.08E4–2.11E4)
loratadine low 6.48E3 (6.44E3–6.51E3) 5.97E3 (5.96E3–5.98E3) 4.225E3 (4.217E3–4.233E3)
diltiazem low 1.053E4 (1.051E4–1.054E4) 1.088E4 (1.087E4–1.09E4) 1.01E4 (1.009E4–1.011E4)

The CiPA hERGmodel parameterized byMilnes protocol data collected at physiological temperature was used to simulate three protocols and predict dose-response curves for 28
CiPA drugs across multiple concentrations. An uncertainty quantification procedure similar to BHMwas used to estimate IC50s, but with only intra-site variability considered. The
2.5% quantile, 50% quantile, and 97.5% quantiles forming the 95% credible intervals (CI) of IC50s for all drugs are shown across the three protocols. The unit for all IC50s is nM.
Note that as 2000 simulated cells were used per concentration, the estimated IC50s generally have lower uncertainty than the variation with protocol dependency. Ramp protocol:
CiPA step-ramp protocol. AP protocol: Action potential wave-form protocol. The rationale of selecting these protocols can be found in the Main Text.
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measured IC50s using the same protocols in the literature, as it will be
difficult to dissect the observed differences into intra-site variability
and inaccuracy of the model. However, comparing the predicted and
observed frequency-dependent hERG block data from the same lab
suggested that our prediction may have captured the hERG dose-re-
sponse reasonably well. On the other hand, some drugs were predicted
by our hERG model to have reverse frequency dependency in hERG
block potency (IC50s are lower at 0.03 Hz compared to 0.2 Hz with the
CiPA step-ramp protocol). Although reverse use dependency on AP
prolongation is often observed at the cellular level for many hERG
blockers (Barandi et al., 2010; Jurkiewicz and Sanguinetti, 1993; Virag
et al., 2009), at the channel level drugs are usually observed to have
either (forward) frequency dependent or frequency independent block
(Stork et al., 2007). Reverse frequency dependency at the channel level
is theoretically possible when drugs can bind to the closed hERG
channel or the tendency to be trapped within the closed hERG channel
is excessive, but this phenomenon is only occasionally observed for few
drugs (Thomas et al., 2003). It is unknown whether our hERG model's
prediction of more widespread channel-level reverse frequency de-
pendency is due to the protocol selection for the simulation, or theo-
retical IC50s with less uncertainty and higher resolution to identify
subtle difference, or inaccuracy of the model by overestimating the
trapping tendency of some hERG blockers. However, this potential
discrepancy does not interfere with the model's ability to highlight the
pattern of protocol-dependent IC50 changes. The last and the most im-
portant limitation is that, block potency estimations are dependent on
data quality and other experimental conditions as well. The HESI multi-
site study had a standardized experimental protocol, but no unified
quality control criteria. This may affect IC50 estimates, and subse-
quently the estimation of the threshold. In addition, a number of ex-
perimental conditions were not standardized, and their impact on hERG
potency estimation is unknown. For instance, different plate types or
reservoir materials were used in this study (polypropylene vs glass-
coated plates, Teflon reservoirs, glass vials etc.). And while all sites used
heterologous cell lines to express human hERG channels, different cell
types (CHO or HEK293) and biological properties (e.g. channel density)
might also contribute to cross-site variability. Our BHM method quan-
tifies the overall inter-lab variabilities from all sources and does not
require any specific experimental conditions to be used by different labs
(such as heterologous vs iPS or native cardiomyocytes), as long as the
underlying experimental protocol is appropriately designed for block
potency estimation and standardized across labs. However, under-
standing the impact of these experimental conditions on potency esti-
mation is essential for future hERG assays.

With the proposed establishment of best practice and quality stan-
dards for in vitro ion channel studies by the ICH S7B/E14 Q&A process
(Questions and Answers, 2018), it is hopeful that in the future similar
multi-site studies with not only standard protocol but also unified
quality control criteria and other important experimental conditions
will be conducted, and then our systematic strategy can be re-applied to
the new data to update the hERG potency estimation and re-define the
safety margin.
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