43 research outputs found
Comparative analyses of vertebrate posterior HoxD clusters reveal atypical cluster architecture in the caecilian Typhlonectes natans
<p>Abstract</p> <p>Background</p> <p>The posterior genes of the <it>HoxD </it>cluster play a crucial role in the patterning of the tetrapod limb. This region is under the control of a global, long-range enhancer that is present in all vertebrates. Variation in limb types, as is the case in amphibians, can probably not only be attributed to variation in <it>Hox </it>genes, but is likely to be the product of differences in gene regulation. With a collection of vertebrate genome sequences available today, we used a comparative genomics approach to study the posterior <it>HoxD </it>cluster of amphibians. A frog and a caecilian were included in the study to compare coding sequences as well as to determine the gain and loss of putative regulatory sequences.</p> <p>Results</p> <p>We sequenced the posterior end of the <it>HoxD </it>cluster of a caecilian and performed comparative analyses of this region using <it>HoxD </it>clusters of other vertebrates. We determined the presence of conserved non-coding sequences and traced gains and losses of these footprints during vertebrate evolution, with particular focus on amphibians. We found that the caecilian <it>HoxD </it>cluster is almost three times larger than its mammalian counterpart. This enlargement is accompanied with the loss of one gene and the accumulation of repeats in that area. A similar phenomenon was observed in the coelacanth, where a different gene was lost and expansion of the area where the gene was lost has occurred. At least one phylogenetic footprint present in all vertebrates was lost in amphibians. This conserved region is a known regulatory element and functions as a boundary element in neural tissue to prevent expression of <it>Hoxd </it>genes.</p> <p>Conclusion</p> <p>The posterior part of the <it>HoxD </it>cluster of <it>Typhlonectes natans </it>is among the largest known today. The loss of <it>Hoxd-12 </it>and the expansion of the intergenic region may exert an influence on the limb enhancer, by having to bypass a distance seven times that of regular <it>HoxD </it>clusters. Whether or not there is a correlation with the loss of limbs remains to be investigated. These results, together with data on other vertebrates show that the tetrapod <it>Hox </it>clusters are more variable than previously thought.</p
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017
This work was produced as part of the activities of FAPESP Research,\ud
Disseminations and Innovation Center for Neuromathematics (grant\ud
2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud
FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud
supported by a CNPq fellowship (grant 306251/2014-0)
Interferon-β therapy reduces CD4+ and CD8+ T-cell reactivity in multiple sclerosis
Therapy with interferon-β (IFN-β) has well-established clinical effects in multiple sclerosis (MS), albeit the immunomodulatory mechanisms are not fully understood. We assessed the prevalence and functional capacity of CD4+ and CD8+ T cells in healthy donors, and in untreated and IFN-β-treated MS patients, in response to myelin oligodendrocyte glycoprotein (MOG). The proportion of CD45RO+ memory T cells was higher in MS patients than in healthy donors, but returned to normal values upon therapy with IFN-β. While CD45RO+ CD4+ T cells from all three groups responded to MOG in vitro, untreated patients showed augmented proliferative responses compared to healthy individuals and IFN-β treatment reduced this elevated reactivity back to the values observed in healthy donors. Similarly, the response of CD45RO+ CD8+ T cells to MOG was strongest in untreated patients and decreased to normal values upon immunotherapy. Overall, the frequency of peripheral CD45RO+ memory T cells ex vivo correlated with the strength of the cellular in vitro response to MOG in untreated patients but not in healthy donors or IFN-β-treated patients. Compared with healthy individuals, responding CD4+ and CD8+ cells were skewed towards a type 1 cytokine phenotype in untreated patients, but towards a type 2 phenotype under IFN-β therapy. Our data suggest that the beneficial effect of IFN-β in MS might be the result of the suppression or depletion of autoreactive, pro-inflammatory memory T cells in the periphery. Assessment of T-cell subsets and their reactivity to MOG may represent an important diagnostic tool for monitoring successful immunotherapy in MS