13 research outputs found

    Epicardial Adipose Tissue–Derived Leptin Promotes Myocardial Injury in Metabolic Syndrome Rats Through PKC/NADPH Oxidase/ROS Pathway

    No full text
    Background The epicardial adipose tissue (EAT) of metabolic syndrome (MetS) is abnormally accumulated with dysfunctional secretion of adipokines, closely relating to cardiac dysfunction. The current study was designed to identify the effects of EAT‐derived leptin on the myocardium of MetS rats and explore the potential molecular mechanisms. Methods and Results A MetS rat model was established in 8‐week‐old Wistar rats by a 12‐week high‐fat diet. MetS rats exhibited increased leptin secretion from EAT, cardiac hypertrophy, and diastolic dysfunction with preserved systolic function. The myocardium of MetS rats had abnormal structure, increased oxidative stress injury, and higher inflammatory factor levels, especially the subepicardial myocardium, which was correlated with the EAT‐derived leptin level but not the serum leptin. The EAT was separated from each group of rats to prepare EAT‐conditioned medium. H9C2 rat cardiomyoblasts were treated with EAT‐conditioned medium or leptin, plus various inhibitors. EAT‐derived leptin from MetS rats promoted mitochondrial oxidative stress and dysfunction, induced mitochondrial pathway apoptosis, and inhibited cell viability in H9C2 cardiomyoblasts via the protein kinase C/reduced nicotinamide adenine dinucleotide phosphate oxidase/reactive oxygen species (PKC/NADPH oxidase/ROS) pathway. EAT‐derived leptin from MetS rats stimulated inflammation in H9C2 cardiomyocytes by promoting activator protein 1 nuclear translocation via the PKC/NADPH oxidase/ROS pathway. Leptin promoted the interaction between p‐p47phox and gp91phox in H9C2 cardiomyocytes via protein kinase C, activating nicotinamide adenine dinucleotide phosphate oxidase, increasing reactive oxygen species generation, and inhibiting cell viability. Conclusions EAT‐derived leptin induces MetS‐related myocardial injury through the following 2 cooperative ways via PKC/NADPH oxidase/ROS pathway: (1) inducing mitochondrial pathway apoptosis by promoting mitochondrial oxidative stress and dysfunction; and (2) stimulating inflammation by promoting activator protein 1 nuclear translocation

    The Green Manure (<i>Astragalus sinicus</i> L.) Improved Rice Yield and Quality and Changed Soil Microbial Communities of Rice in the Karst Mountains Area

    No full text
    The use of green manure plants for soil restoration is a viable agricultural practice that can mitigate soil degradation and biodiversity loss caused by the long-term application of inorganic fertilizers. However, the effects of green manure on soil microbial communities, rice yield, and quality in the karst mountains are largely unknown. The effects of no chemical fertilizer, chemical fertilizer, chemical fertilizer + different Astragalus sinicus L. (Chinese milk vetch, CMV) treatments on the microbial community, soil enzyme activities, soil nutrient content, and crop yield were investigated through field experiments. A moderate application of chemical fertilizer with green manure can increase chlorophyll content, increase effective rice spikes, positive impact on rice yield, and increase crude protein, etc. Additional application of the moderate amount of CMV can increase alkali-hydrolyzable nitrogen and available phosphorus (a significant increase of 54.87–72.65%), improve microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) (CFMV2 significantly increased by 22.16%), improve soil urease and phosphatase activities, and the urease activity increased by 43.43–69.24% with CMV application compared to CK. Moreover, all bacterial communities were dominated by three major phyla (Proteobacteria, Chloroflexi, and Acidobacteria), where the application of chemical fertilizer with CMV increased the ratio of abundance of Proteobacteria and Acidobacteria in rice soils, and the effect of chemical fertilizer application on the dominant bacteria was regulated to some extent by additional green manure application, which may have a beneficial effect on rice yield. Therefore, we conclude that the rational use of chemical fertilizers with CMV (22,500 kg ha−1) in karst landscapes is one of the effective measures to achieve efficient and sustainable use of rice fields

    Temporally and spatially resolved molecular profiling in fingerprint analysis using indium vanadate nanosheets-assisted laser desorption ionization mass spectrometry

    No full text
    Abstract This study presents the first-ever synthesis of samarium-doped indium vanadate nanosheets (IVONSs:Sm) via microemulsion-mediated solvothermal method. The nanosheets were subsequently utilized as a nano-matrix in laser desorption/ionization mass spectrometry (LDI-MS). It was discovered that the as-synthesized IVONSs:Sm possessed the following advantages: improved mass spectrometry signal, minimal matrix-related background, and exceptional stability in negative-ion mode. These qualities overcame the limitations of conventional matrices and enabled the sensitive detection of small biomolecules such as fatty acids. The negative-ion LDI mechanism of IVONSs:Sm was examined through the implementation of density functional theory simulation. Using IVONSs:Sm-assisted LDI-MS, fingerprint recognitions based on morphology and chemical profiles of endogenous/exogenous compounds were also achieved. Notably, crucial characteristics such as the age of an individual’s fingerprints and their physical state could be assessed through the longitudinal monitoring of particular biomolecules (e.g., ascorbic acid, fatty acid) or the specific biomarker bilirubin glucuronide. Critical information pertinent to the identification of an individual would thus be facilitated by the analysis of the compounds underlying the fingerprint patterns. Graphical Abstrac

    Improving Ecological Functions and Ornamental Values of Traditional Pear Orchard by Co-Planting of Green Manures of <i>Astragalus sinicus</i> L. and <i>Lathyrus cicera</i> L.

    No full text
    Traditional orchards received little attention in ecology. In order to enhance the ecological function of traditional pear orchard, it is an effective strategy to co-plant the ornamental green manure (GM) under the pear forest. In this study, two kinds of GM, i.e., Astragalus sinicus L. (AS) and Lathyrus cicera L. (LC), were co-planted in pear tree orchard to elevate its landscape benefits of spatiotemporal distribution of flowers, the nutrient benefits and oxygen production. The results showed that the flower height of AS and LC arrange between 20~30 cm, and the flowering period covers the March. LC has a large number of flowers, a small area of single flower, and high yield of fresh grass. AS has a small number of flowers, a large area of single flower, and low yield of a single fresh grass. Among them, 35% AS + 65% LC and 50% AS + 50% LC are more suitable in achieving the well tourism value and potential good production of pear orchard. Nutrient accumulation, total carbon fixation and oxygen production, flower number of 35% AS + 65% LC are larger than other treatments, while the flower period of 50% AS + 50% LC is longest. This study proposed a “win-win” GM planting strategy for sustainable orchard development, by enhancing ecology functions and the landscaped value of the traditional fruit orchard

    Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach

    No full text
    Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≄ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456
    corecore