13 research outputs found

    Effective Neutralizing Antibody Response Against SARS-CoV-2 Virus and Its Omicron BA.1 Variant in Fully Vaccinated Hematological Patients

    Get PDF
    SARS-CoV-2 and its variants cause CoronaVIrus Disease 19 (COVID-19), a pandemic disease. Hematological malignancies increase susceptibility to severe COVID-19 due to immunosuppression. Anti-SARS-CoV-2 neutralizing antibodies protect against severe COVID-19. This retrospective real-life study aimed to evaluate seropositivity and neutralizing antibody rates against SARS-CoV-2 and its Omicron BA.1 variant in hematological patients. A total of 106 patients with different hematologic malignancies, who have mostly received three or more vaccine doses (73%), were included in this study. Serum was collected between May and June 2022. The primary endpoint was anti-SARS-CoV-2 antibody response against ancestral (wild type; wt) and Omicron BA.1 virus, defined as a neutralizing antibody titer ≥ 1:10. Adequate neutralizing antibody response was observed in 75 (71%) and 87 (82%) of patients for wt and Omicron BA.1 variants, respectively.However, patients with B-cell lymphoproliferative disorders and/or those treated with anti-CD20 monoclonal antibodies in the prior 12 months showed a lower seropositivity rate compared to other patients against both Omicron BA.1 variant (73% vs 91%; P = 0.02) and wt virus (64% vs 78%; P = 0.16). Our real-life experience confirmed that full vaccination against SARS-CoV-2 induces adequate neutralizing antibody protection for both the wt virus and Omicron BA.1 variants, even in hematological frail patients. However, protective measures should be maintained in hematological patients, especially those with B-cell lymphoproliferative diseases treated with anti-CD20 monoclonal antibodies, because these subjects could have a reduced neutralizing antibody production

    Innovative Anti-CD38 and Anti-BCMA Targeted Therapies in Multiple Myeloma: Mechanisms of Action and Resistance

    No full text
    CD38 and B-cell maturation antigens (BCMAs) are prevalently expressed on neoplastic plasma cells in multiple myeloma (MM), making them ideal therapeutic targets. Anti-CD38 monoclonal antibodies, such as approved daratumumab and isatuximab, are currently the milestone in MM treatment because they induce plasma cell apoptosis and kill through several mechanisms, including antibody-dependent cellular cytotoxicity or phagocytosis. BCMA is considered an excellent target in MM, and three different therapeutic strategies are either already available in clinical practice or under investigation: antibody–drug conjugates, such as belantamab-mafodotin; bispecific T cell engagers; and chimeric antigen receptor-modified T cell therapies. Despite the impressive clinical efficacy of these new strategies in the treatment of newly diagnosed or multi-refractory MM patients, several mechanisms of resistance have already been described, including antigen downregulation, the impairment of antibody-dependent cell cytotoxicity and phagocytosis, T- and natural killer cell senescence, and exhaustion. In this review, we summarize the current knowledge on the mechanisms of action and resistance of anti-CD38 and anti-BCMA agents and their clinical efficacy and safety

    A Frail Hairy Cell Leukemia Patient Successfully Treated with Pegylated Interferon-α-2A

    No full text
    Hairy cell leukemia (HCL) treatment in elderly, frail subjects is still unsatisfactory, and interferons, old-fashioned therapies, can be effectively used in this subset of patients. Here, to the best of our knowledge, we report for the first time an old, frail HCL patient effectively and safely treated with pegylated interferon-α-2a in monotherapy as a first-line treatment. At diagnosis, the patient arrived in a life-threating condition due to severe neutropenia and splenomegaly with high risk of splenic rupture. However, splenectomy was proposed and refused by the patient; therefore, a therapy with pegylated interferon-α-2a was initiated. After six months of therapy, the patient displayed the disappearance of palpable splenomegaly and of peripheral hairy cells at morphological examination without any drug-related adverse event. Our case report supports the use of pegylated interferon-α-2a in monotherapy as an effective and safe alternative therapeutic option in frail, elderly patients not eligible for purine analogous or targeted therapies

    The TKI Era in Chronic Leukemias

    No full text
    Tyrosine kinases are proteins involved in physiological cell functions including proliferation, differentiation, and survival. However, the dysregulation of tyrosine kinase pathways occurs in malignancy, including hematological leukemias such as chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Particularly, the fusion oncoprotein BCR-ABL1 in CML and the B-cell receptor (BCR) signaling pathway in CLL are critical for leukemogenesis. Therapeutic management of these two hematological conditions was fundamentally changed in recent years, making the role of conventional chemotherapy nearly obsolete. The first, second, and third generation inhibitors (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) of BCR-ABL1 and the allosteric inhibitor asciminib showed deep genetic and molecular remission rates in CML, leading to the evaluation of treatment discontinuation in prospective trials. The irreversible BTK inhibitors (ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and spebrutinib) covalently bind to the C481 amino acid of BTK. The reversible BTK inhibitor pirtobrutinib has a different binding site, overcoming resistance associated with mutations at C481. The PI3K inhibitors (idelalisib and duvelisib) are also effective in CLL but are currently less used because of their toxicity profiles. These tyrosine kinase inhibitors are well-tolerated, do have some associated in-class side effects that are manageable, and have remarkably improved outcomes for patients with hematologic malignancies

    Macrophages and Urokinase Plasminogen Activator Receptor System in Multiple Myeloma: Case Series and Literature Review

    No full text
    : The microenvironment plays an essential role in multiple myeloma (MM) development, progression, cell proliferation, survival, immunological escape, and drug resistance. Mesenchymal stromal cells and macrophages release tolerogenic cytokines and favor anti-apoptotic signaling pathway activation, while the urokinase plasminogen activator receptor (uPAR) system contributes to migration through an extracellular matrix. Here, we first summarized the role of macrophages and the uPAR system in MM pathogenesis, and then we reported the potential therapeutic effects of uPAR inhibitors in a case series of primary MM-derived adherent cells. Our preliminary results showed that after uPAR inhibitor treatments, interleukein-6 (mean ± SD, 8734.95 ± 4169.2 pg/mL vs. 359.26 ± 393.8 pg/mL, pre- vs. post-treatment; p = 0.0012) and DKK-1 levels (mean ± SD, 7005.41 ± 6393.4 pg/mL vs. 61.74 ± 55.2 pg/mL, pre- vs. post-treatment; p = 0.0043) in culture medium were almost completely abolished, supporting further investigation of uPAR blockade as a therapeutic strategy for MM treatment. Therefore, uPAR inhibitors could exert both anti-inflammatory and pro-immunosurveillance activity. However, our preliminary results need further validation in additional in vitro and in vivo studies

    High-Risk Acute Myeloid Leukemia: A Pediatric Prospective

    No full text
    Pediatric acute myeloid leukemia is a clonal disorder characterized by malignant transformation of the hematopoietic stem cell. The incidence and the outcome remain inferior when compared to pediatric ALL, although prognosis has improved in the last decades, with 80% overall survival rate reported in some studies. The standard therapeutic approach is a combined cytarabine and anthracycline-based regimen followed by consolidation with allogeneic stem cell transplantation (allo-SCT) for high-risk AML and allo-SCT for non-high-risk patients only in second complete remission after relapse. In the last decade, several drugs have been used in clinical trials to improve outcomes in pediatric AML treatment

    Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain

    No full text
    Neuropathic pain is a pathological condition induced by a lesion or disease affecting the somatosensory system, with symptoms like allodynia and hyperalgesia. It has a multifaceted pathogenesis as it implicates several molecular signaling pathways involving peripheral and central nervous systems. Affective and cognitive dysfunctions have been reported as comorbidities of neuropathic pain states, supporting the notion that pain and mood disorders share some common pathogenetic mechanisms. The understanding of these pathophysiological mechanisms requires the development of animal models mimicking, as far as possible, clinical neuropathic pain symptoms. Among them, the Spared Nerve Injury (SNI) model has been largely characterized in terms of behavioral and functional alterations. This model is associated with changes in neuronal firing activity at spinal and supraspinal levels, and induces late neuropsychiatric disorders (such as anxious-like and depressive-like behaviors, and cognitive impairments) comparable to an advanced phase of neuropathy. The goal of this review is to summarize current findings in preclinical research, employing the SNI model as a tool for identifying pathophysiological mechanisms of neuropathic pain and testing pharmacological agent

    Palmitoylethanolamide reduces neuropsychiatric behaviors by restoring cortical electrophysiological activity in a mouse model of mild traumatic brain injury

    No full text
    Traumatic brain injury (TBI) represents a major public health problem, which is associated with neurological dysfunction. In severe or moderate cases of TBI, in addition to its high mortality rate, subjects may encounter diverse behavioral dysfunctions. Previous reports suggest that an association between TBI and chronic pain syndromes tends to be more common in patients with mild forms of brain injury. Despite causing minimal brain damage, mild TBI (mTBI) often leads to persistent psychologically debilitating symptoms, which can include anxiety, various forms of memory and learning deficits, and depression. At present, no effective treatment options are available for these symptoms, and little is known about the complex cellular activity affecting neuronal activity that occurs in response to TBI during its late phase. Here, we used a mouse model to investigate the effect of Palmitoylethanolamide (PEA) on both the sensorial and neuropsychiatric dysfunctions associated with mTBI through behavioral, electrophysiological, and biomolecular approaches. Fourteen-day mTBI mice developed anxious, aggressive, and reckless behavior, whilst depressive-like behavior and impaired social interactions were observed from the 60th day onward. Altered behavior was associated with changes in interleukin 1 beta (IL-1β) expression levels and neuronal firing activity in the medial prefrontal cortex. Compared with vehicle, PEA restored the behavioral phenotype and partially normalized the biochemical and functional changes occurring at the supraspinal level. In conclusion, our findings reveal some of the supraspinal modifications responsible for the behavioral alterations associated with mTBI and suggest PEA as a pharmacological tool to ameliorate neurological dysfunction induced by the trauma
    corecore