7,813 research outputs found

    Evaluation of the Water Quality Impacts of Land Application of Poultry Litter

    Get PDF
    Evaluating the effect of land application of animal waste on water quality is fraught with inherent variability due to differing infiltration rates, slope, rainfall intensity and etc . Simulated rainfall technology has been used in erosion research for decades. Generally, this technology is used on plots of sufficient size (25 x 5 m) to develop rill and interrill erosion. The object of this investigation was to adapt and modify existing rainfall simulation technology used in soil erosion research for use in evaluating water quality impacts of land application of animal waste, and to test, evaluate and demonstrate it\u27s scientific validity. State of the art simulation technology was obtained from the National Soil Erosion Research Laboratory located on the campus of Purdue University. The technology was scaled (2 x 6 m) and modified to fit into field research programs having several treatments and rep 1 i cated p 1 ots . The technology was shown to meet specification needed to produce the required raindrop size and velocity, flexibility in storm intensity, while maintaining uniformity(\u3e 0.8). Equally important, the unit is portable and fits well into labor intensive runoff work requiring replication of a variety of treatments

    Phosphorus Immobilization in Poultry Litter and Litter-amended soils with Aluminum, Calcium and Iron amendments

    Get PDF
    Arkansas produces approximately one billion broilers each year. Phosphorous (P) runoff from fields receiving poultry litter is believed to be one of the primary factors affecting water quality in Northwest Arkansas. Poultry litter contains approximately 20 g P kg-1, of which about 2 g P kg-1 is water soluble. Soils that have received repeated heavy applications of litter may have water soluble P contents of as high as 10 mg P Kg-1 soil. The objective of this study was to determine if soluble P levels could be reduced in poultry litter and litter-amended soils with Al,Ca, and/or Fe amendments. Poultry litter was amended with alum, sodium aluminate, quick lime, slaked lime, calcitic limestone, dolomitic limestone, gypsum, ferrous chloride, ferric chloride, ferrous sulfate and ferric sulfate, and incubated in the dark at 25°C for one week. Three soils which had been excessively fertilized with poultry litter were amended with alum, ferrous sulfate, calcitic limestone, gypsum and slaked lime and incubated for 4 weeks at 25 °C. In the litter studies, the Ca treatments were tested with and without CaF2 additions in an attempt to precipitate fluorapatite. At the end of the incubation period, the litter and soils were extracted with deionized water and soluble reactive P (SRP) was determined. SRP levels in the poultry litter were reduced from over 2,000 mg P kg-1 litter to less than 1 mg P kg-1 litter with the addition of alum, quick lime, slaked lime, ferrous chloride, ferric chloride, ferrous sulfate and ferric sulfate under favorable pH conditions. S.RP levels in the soils were reduced from approximately 5 mg P Kg-1 soil to less than 0.05 mg P Kg-1 soil with the addition of alum and ferrous sulfate under favorable pH conditions. Gypsum and sodium aluminate reduced SRP levels in litter by 50 to 60 percent while calcitic and dolomitic limestone were even less effective. In soils, the Ca amendments were less effective than the Al and Fe amendments, although slaked lime was effective at high pH. The results of these studies suggest that treating litter and excessively fertilized soils with some of these compounds, particularly alum, could significantly reduce the amount of SRP in runoff from littered pastures. Therefore, chemical additions to reduce SRP in litter and soil may be a best management practice in situations where eutrophication of adjacent water bodies due to P runoff has been identified. Preliminary calculations indicate that this .p ractice may be economically feasible. However, more research is needed to determine any beneficial and/or detrimental aspects of this practice

    Spin-Correlation Coefficients and Phase-Shift Analysis for p+3^3He Elastic Scattering

    Full text link
    Angular Distributions for the target spin-dependent observables A0y_{0y}, Axx_{xx}, and Ayy_{yy} have been measured using polarized proton beams at several energies between 2 and 6 MeV and a spin-exchange optical pumping polarized 3^3He target. These measurements have been included in a global phase-shift analysis following that of George and Knutson, who reported two best-fit phase-shift solutions to the previous global p+3^3He elastic scattering database below 12 MeV. These new measurements, along with measurements of cross-section and beam-analyzing power made over a similar energy range by Fisher \textit{et al.}, allowed a single, unique solution to be obtained. The new measurements and phase-shifts are compared with theoretical calculations using realistic nucleon-nucleon potential models.Comment: Submitted to Phys. Rev.

    Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure

    Full text link
    Bundles of many fibers, with statistically distributed thresholds for breakdown of individual fibers and where the load carried by a bursting fiber is equally distributed among the surviving members, are considered. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, with a distribution D(Delta) of the magnitude Delta of such avalanches. We show that there is, for certain threshold distributions, a crossover behavior of D(Delta) between two power laws D(Delta) proportional to Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic behavior, and we give the condition for which the D(Delta) proportional to Delta^(-3/2) behavior is seen. This crossover is a signal of imminent catastrophic failure in the fiber bundle. We find the same crossover behavior in the fuse model.Comment: 4 pages, 4 figure

    Assessment of Effectiveness of Buffer Zones in Removing Impurites in Runoff from Areas Treated with Poultry Litter

    Get PDF
    Land application of animal manures (e.g. poultry litter, poultry manure, and swine manure) to pasture and range can lead to runoff quality degradation during storms that occur soon after application. Vegetative filter strips (VFS) have been shown to reduce pollution in runoff from row-cropped areas but have not been extensively studied in pasture and range settings. This research involved characterizing performance of fescue VFS in improving quality of runoff from pasture land areas treated with poultry litter and swine manure. The VFS were found to be quite effective in reducing off-site transport of ammonia nitrogen (NH3-N), total Kjeldahl nitrogen (TKN), ortho-phosphorus (P04-P), total phospnorus (TP) , and fecal coliform (FC) for simulated storms occurring 2-5 days following poultry litter and swine manure applicati on. The VFS were from 81 to 99% effective (at a VFS length of 21.4 m) in reducing incoming mass transport of NH3-N, TKN, P04-P, TP, and FC in runoff from poultry litter-treated plots. Similar performance was observed for the VFS installed below plots treated with swine manure. Transport of suspended solids and chemical oxygen demand was also reduced by the VFS, but generally not to the extent of other litter and manure constituents. Transport of poultry litter and swine manure constituents were well-described by first-order kinetics

    Stoichiometry control of sputtered CuCl thin films: Influence on ultraviolet emission properties

    Get PDF
    We demonstrate that the chemical composition of the sputtered CuCl thin films could be finely controlled by adjusting the bias to the substrate. The films deposited without any intentional bias were Cl rich (CuCl1+x), a bias of −22 V yielded stoichiometric CuCl, and a further increase in the negative bias resulted in Cl deficient films (CuCl1−x). The crystalline and optical properties were found to be associated with the chemical composition. Cl rich films showed a deep level green emission at around 515 nm in addition to ultraviolet (UV) excitonic emission. The stoichiometric films have higher optical quality, exhibiting a sharp UV emission at around 385 nm at room temperature, compared to nonstoichiometric samples. Visible luminescence related to deep level defects was not observed in the stoichiometric films. Changes in energy of the flux from the target and the subsequent ion bombardment on the substrate surface are correlated with the variations in chemical composition and their impact on the film microstructure and UV emission

    Earth resources-regional transfer activity contracts review

    Get PDF
    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized

    Resonance energy transfer: The unified theory revisited

    Get PDF
    Resonanceenergy transfer (RET) is the principal mechanism for the intermolecular or intramolecular redistribution of electronic energy following molecular excitation. In terms of fundamental quantum interactions, the process is properly described in terms of a virtual photon transit between the pre-excited donor and a lower energy (usually ground-state) acceptor. The detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical techniques with the observable, the transfer rate, derived via application of the Fermi golden rule. In the treatment reported here, recently devised state-sequence techniques and a novel calculational protocol is applied to RET and shown to circumvent problems associated with the usual method. The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The method is used to derive a new result for energy transfer systems sensitive to both magnetic- and electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall rate
    corecore