
Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1977

Analysis of stresses in superstructure of glenfield
bridge over back channel, October 1977
J. H. Daniels

W. C. Herbein

H. T. Sutherland

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

Recommended Citation
Daniels, J. H.; Herbein, W. C.; and Sutherland, H. T., "Analysis of stresses in superstructure of glenfield bridge over back channel,
October 1977" (1977). Fritz Laboratory Reports. Paper 2198.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/2198

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228629314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/2198?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


• 

COHMONHEALTH OF PEl'."'NSYl.VANIA 

Department of Transportation 

Bureau of Materials, Testing and Research 

Leo D. Sandvig - Director 
Wade L. Gramling - Research Engineer 

Kenneth L. Heilman - Research Coordinator 

Project 77-5: Evaluation of the Fracture cf the Glenfield Bridge Girder 

ANALYSIS OF STRESSES IN SUPERSTRUCTUl~ 

OF GLENFIELD BRIDGE OVER BACK CHANNEL 

FRITZ ENGINEERING 
LABORATOF\Y LIBRARY 

by 

J. Hartley Daniels 

Hilliam C. Herbein 

Hugh Sutherland 

Prepared in cooperation wi~h tl1e Pennsylvania Department of 
Transportation and the U. S. Department of Transportation, 
Federal Higln.;ray Administn:tion. 

The contents of this report reflect the vievJS of the authors 
who are responsible for the facts and the accuracy of the data 
presented herein. The contents do not necessarily reflect the 
official vie\·7S or policies of the Pennsylvania Department of 
Transportation or the Federal Highv7ay Administration. This re­
port does not constitute a standard, specification, or regulation. 

LEHIGH UNIVERSITY 

Office of Research 

Bethlehem, Pennsylvania 

October 1977 

Fritz Engineering Laboratory Report No. 425/1/77 



... 

ABSTRACT 

This investigation reports the results of strain measurements 

made on the superstructure of the Glenfield Bridge on I79 near Pitts­

burgh, Fa., during the field splicing of the fractured fascia girder. 

The difference between splice plate force, as determined by strain 

gages, and the total jacking force can be attributed primarily to 

friction forces and to temperature effects. Because of friction between 

the splice plates and the flange, stress changes due to temperature 

flucuations can occur in the splice plates at the fracture cross section 

without influencing the hydraulic pressure in the jacks. The measured 

stress distribution near the fracture cross section during the jacking 

operation shows excellent correlation with the results of a finite 

element analysis of the fractured girder. 
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1. INTRODUCTION 

1.1 Background 

The I-79 Glenfield Bridge over the Ohio River back channel was 

opened to traffic on September 3, 1976. On January 28, 1977, the steel 

fascia, or outside, girder of the three-span continuous (226'-350 1 -226') 

superstructure carrying the northbound la~es over the back channel was 

observed to have fractured. (l) The crack had extended to the underside 

of the top flange before traffic was stopped from using the structure. 

The fracture occurred at midpoint of the 350 ft center span 

(span 9) of the fascia girder (girder G4) as shown in Fig. 1. The 

superstructure consists of t~vo main girders, G3 and G4, wj_th transverse 

floor beam trusses spaced at 25 ft which support W24x68 stringers. The 

girders and stringers support an 8-1/2 in. noncomposite reinforced 

concrete slab. The adjacent superstructure carrying the southbound 

lanes also has two main girders, Gl and G2. The t~vo superstructures 

are connected by trussed diaphragms Hhich are designed to transmit live 

load between the structures. 

At the fracture cross section girder G4 consists of an 11 ft x 

1/2 in. web welded to 30 in. x 3-1/2 in. flanges. The web and flange 

plates are of A588 steel. 

Subsequent inspections showed that the fracture had occurred at 

an electroslag weldment used to splice the tension flange of girder G4. 
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Inspection also revealed that the top flange of girder G4, in 

the vicinity of the fracture, had moved laterally to the east about an 

inch. This movement sheared off the narrow concrete fillet adjacent 

to the east edge of the top flange for a distance of 20 to 30 ft either 

side of the fracture cross section. The bottom flange had also moved 

laterally a small amount. 

The girder was repaired by the installation of a bolted field 

splice on the web and tnesion flange after removal of a 30 in. x 60 in. 

segment of the girder. The web splice consists of two 126 in. x 55-1/2 

in. plates. The tension flange splice consists of two top plates 14 ft 

5-1/4 in. x 14 in. x 2-3/4 in. and one bottom plate 14 ft 5-1/4 in. x 

30 in. x 2-3/4 in. The total area of the splice plates is 159.5 in. 2 

The field splice of girder G4 was installed in three main steps 

as fo llov1s : 

(1) The web and tension flange splice plates were bolted to the south 

side (Fig. 1) of the fracture cross section, 

(2) four 300-ton capacity horizontal hydraulic jacks anchored to the 

tension flange north of the fracture cross section (two on top, 

two below) near the unbolted ends of the tension flange splice 

plates, pulled on the flange splice plates with sufficient force 

to bring the bridge deck back to near original alignment and 

essentially restore the deadload bending moment distributions in 

girder G4, and 

(3) the remaining bolts in the web and tension flange splice plates 

were installed to complete the repair. (2) 
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During Step 2, the compression flange of girder G4 was also 

pulled slightly west to bring it back to its original position relative 

to the concrete slab in the vicinity of the fracture cross section. 

Figure 2 shows the horizontal hydraulic jacking arrangement 

mounted to the tension flange of girder G4. The hydraulic jacks are 

shown to the right (north) of the figure. They react against an anchor 

block which is shown bolted to the tension flange several feet north . 

of the fracture cross section. Large pullrods run from the jacks to 

the vertical pull plates just left of center of the figure. The pull 

plates are welded to the unbolted ends of the tension flange splice 

plates. The large nuts are on the south ends of the pull rods. The 

fracture cross section is out of view to the left. The "C" shaped 

plates joining the puJ.lrods prevent the unbolted ends of the tension 

flange splice plates from deflecting away from the tension flange under 

the eccentrically applied jack loads. 

1.2 Objectives 

This report presents the results of. strain measurements made on 

the tension flange splice plates, on several girder cross sections and 

on other members of the superstructure during the jacking operation. 

The primary objectives of this investigation are to: 

, ... Provide an independent check during the jacking operation of 

the total force in the tension flange splice plates. The jacking 

operation was controlled by others using calibrated pressure gages, 

-3-



2, Determine the incremental change in strain that was introduced 

into girders G2, G3, and G4 at four selected cross sections, 

during the jacking operation, 

3. Determine the incremental change in strain that was introduced 

into certain floor beam truss members and certain bottom lateral 

bracing members, and to 

4. Correlate the measured strain distributions with the predicted 

strain distributions obtained from mathematical models of the 

structure. 

1.3 Scope 

Strain measurements were acquired on March 16 and 17, 1977, at 

two cross sections of girder G4. Strains were also measured at one cross 

section each of girders G2 and G3, on several members of the floor beam 

truss immediately south of the fracture and on t·wo members of the bottom 

lateral bracing system adjacent to the fracture. Measurements were made 

prior to starting the jacking operation and at several intermediate load 

levels up to restoration of the dead load bending moment in girder G4. 

Measurements were also made after high strength bolts were loosened in 

all floor beam-to-girder connections which showed overstress. Bolts were 

loosened at two intermediate stages of jacking. 

Strain measurements were also acquired from the tension flange 

splice plates. The resulting total force in the splice plates was used 

to provide an independent check, during the jacking operation, of the 

jack loads as determined by others using calibrated pressure gages. 
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The measured strains are also compared with predicted strains 

provided by Richardson, Gordon and Associates. (J) In addition, the 

measured strains in girder G4, adjacent to the fracture are compared 

to the predicted strains computed using the finite element program 

SAP IV. (4 ) Both composite and noncomposite models were used in the 

finite element analysis. 
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2. INSTRUMENTATION AND RECORDING SYSTEM 

2.1 Instrumentation of Bridge 

Figure 3 shows the strain gages that >vere mounted on two cross 

sections of girder G4, on one cross section each of girders G2 and G3, 

on several members of the floor beam truss immediately south of the 

fracture, and on t\lO members of the botto:n lateral bracing system 

adjacent to the fracture. Strain gages were also mounted on the edges 

of the tension flange splice plates as shown in Fig. 4. 

The gages used were 1/4 in., 120 ohm electical resistance strain 

gages. They were mounted parallel to the direction of flexural stress 

in the girders and splice plates a.nd parallel to the direction of axial 

stress in the floor beam truss members. A quarter-bridge, three-wire 

hookup was used, which automatically provides lead-wire and temperature 

compensation to all gages. 

2.2 Strain Recording System 

Signals from all strain gages were brought to switch boxes and an 

automatic self-balancing strain recorder located inside a van which was 

parked on the bridge deck. Figure 5 shows the instrumentation van which 

is parked on the west side of the bridge over girder G2. The arch span 

over the main channel, north of the back channel, can be seen in the 

background. The casualty girder, G4, is located under the east side of 

the bridge which is on the right side of Fig. 5. The van is located at 
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the intersection of girder G2 and gage section 1, which are shown in 

Fig. 3. A view of the switch boxes and self-balancing strain recorder 

is shown in Fig. 6. 
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3. RESULTS OBTAINED DURING JACKING OPERATION 

3.1 Force in Splice Plates and Jack Force 

The relationship between the computed force in the splice plates 

in kips (from measured strains) versus the closing displacement of the 

tension flange in inches, at the fracture cross section is shown in 

Fig. 7. The relationship between the total jack force as determined 

from calibrated pressure gages, versus the closing displacement of the 

flange is also shown in Fig. 7 for comparison. The flange was closed 

in increments of 1/4 in. until 1-1/4 in. relative closing displacement 

was reached. Then two additional increments were added until the total 

relative displacement reached 1-23/32 in. 

The jacking operation commenced at 1:00 p.m., March 16, 1977. 

Th · t t 52°F. e aLr empera ure was Initial strain readings were taken at 

this time at all strain gage locations. When a 1/2 in. relative closing 

displacement was reached, some bolts at the west end of the floor beam 

truss just south of the fracture cross section were loosened. The force 

in the splice plates increased slightly (points S2 and S3, Fig. 7). The 

force at the hydraulic jacks however did not change (points J2 and J3). 

Additional bolts in the floor beam truss north of the fracture cross 

section were loosened next without any further change in the force in 

the splice plates or the hydraulic jacks. The comp~ession flange of 

girder G4 near the fracture cross section was then pulled slightly west 

to align the girder. 
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When 1-3/8 in. displacement \vas reached (points S7 and J7) 

additional bolts were loosened on both floor beam trusses. Bolts were 

also loosened on the bottom lateral bracing members between girders G3 

and G4 in the vicinity of the fracture cross section. The force in the 

splice plates increased (S7 to S8) while the jack force decreased (J7 

to J8). The jack force was brought back to its original value (points 

J7 and J9). The force in the splice plates again increased slightly 

(point S9). 

At this point, at 6:30 p.m. on March 16, 1977, the air tempera­

ture was 50°F. The jack force was then dropped to zero (JlO) '~1ile lock 

nuts on the four pull rods maintained the tension in the splice plates 

(SlO). 

At 7:30a.m., March 17, 1977, prior to increasing the jack force 

(Jll), the force in the splice plates had increased 200 kips or 1.25 ksi 

(SlO to Sll) due to an air temperature change from 50°F (SlO) to 35°F. 

Such a change would be expected in a 3-span continuous structure as a 

result of the temperature differential between the concrete slab and 

the steel structure. At 9:50a.m., March 17, 1977, the jack force 

was increased from zero until a slight movement of the tension flange 

was observed (Jl2). Unfortunately no corresponding measurement of the 

force in the splice plates was made. Thus, point Sl2 can not be shown 

in Fig. 7. At 10:00 a.m., March 17, 1977~ the jack force was increased 

so that the original gap that existed between the fracture surfaces was 

eliminated. The resulting jack force is shown in Fig. 7 by point Jl3. 

The corresponding force in the splice plates is shown by point Sl3. At 
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this time the hydraulic jacks were retracted (Jl4). The tension in the 

splice plates was maintained by the four pull rods. At 12:00 noon, 

March 17, 1977, the final measurement of the splice plate force was 

made (Sl4). The measured force in the splice plates at this time (Sl4) 

was 1674 kips. 

3.2 Stress Distributions in Girders. 

3.2.1 Girder G4 

The measured stress distributions in girder G4 are shown in 

Fig. 8. Figure 8a shows the stress distributions on section 1 (Fig. 1) 

near the fracture cross section. The measured stress on each side of 

the girder at section 1 are plotted, and averaged to show the stress 

distribution in the girder (Solid Curves). Stress profiles are shown 

corresponding to splice plate forces of 685 (S3), 1305 (S5), and 1674 

(Sl4) kips. The difference in the measured stress in the tension 

flange and at mid-depth is relatively small. However the difference 

is particularly apparent in the top flange where a transverse jack force 

was applied to align the girder as mentioned in Arts. 1.1 and 3 .1. 

Figure 8b shows the stress distributions on section 2 (Fig. 3) at the 

same levels of splice plate forces. Note that two plotted points were 

available on the bottom flange, but only one each at mid-depth and on 

the compression flange. 

3.2.2 Girders G2 and G3 

The measured stress distributions in girders G2 and G3 are shown 

in Fig. 9. Figure 9a shows the stress distributions on section 1 (Fig. 3) 
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of girder G2 corresponding to splice plate forces of 685, 1305, and 

1674 kips. Only one bottom flange stress level was recorded at 1674 

kips because one of the two G2 bottom flange stra~n gages (Fig. 3) was 

o~t of commission at the completion of the jacking operation. Figure 9b 

shows the stress distributions on section 1 (Fig. 3) of girder G3 at the 

same levels of splice plate forces. 

3.3 Stresses in Other Members 

Table 1 shows the measured and computed strains and stresses in 

selected members of the floor beam truss and bottom lateral bracing 

system near the fracture cross section. (See Fig. 3 for location of 

strain gages.) 

Columns 1 to 6 inclusive show the measured strains and computed 

stresses (E = 29,500 ksi) at each of six locations corresponding to 

measured splice plate forces of 685, 1305, 1674 kips. These levels of 

splice plate forces were selected so that the results shown in Table 1 

would correlate with those given in Figs. 8 and 9. 

Columns 7 to 10 inclusive give the strains and stresses predicted 

by Richardson, Gordon and Associates in Ref. 3. Reference 3 used a 

predicted total jack force of 1950 kips. The values given in Ref. 3 

were modified assuming linear elastic behavior to show predicted strains 

and stresses at the measured 1674 kip level. Reference 3 assumed that 

the total jack force and the splice plate force would be equal. 
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4. ANALYSIS OF RESULTS 

4.1 Comparison of Measured Splice Plate Fore~ with Total Jack Force 

It is evident from an examination of Fig. 7 that the splice plate 

force, as determined by strain gages (Fig. 4), does not completely agree 

with the total jack force as determined by calibrated pressure gages. 

The force in the splice plates is consistently lower whenever the jacks 

are under pressure and closing the tension flange. 

Assuming that the calibrated pressure gages are accurate, there 

are three main reasons for the discrepancy: 

1. The pull rods are eccentric to the splice plates as shown in Fig. 

2. The large "C11 shaped plates, connecting pairs of pull rods 

top and bottom, are designed to minimize separation between the 

splice plates and the tension flange under the "C!I plate. It was 

observed during jacking, however, that both "C" plates distorted 

and opened up. It was apparent that the splice plates were 

bending and that a compressive force was being developed between 

the ends of the splice plates (just left of the anchor block 

bolted to the tension flange as shown in Fig. 2) and the tension 

flange. A lubricant placed on the surfaces of the splice plates 

to relieve the resulting friction forces was ground off prior to 

jacking. 

It is believed that substantial friction forces were 

developed at the ends of the splice plates, resulting in higher 

-12-



jack forces. This conclusion is supported by the behavior at 

1/2 in. displacement shown in Fig. 7. When bolts were loosened 

in the floor beam truss, the force in the splice plates increased 

slightly as shown by points S2 and S3. An increase in splice 

plate force would be expected due to a reduction in torsional 

restraint to girder G4 upon loosening the bolts. The jack force 

did not change (J2 and J3). This would be expected if frictional 

forces developed between the splice plate gages and the hydraulic 

jacks. 

In addition, at 1-3/8 in. displacement (Fig. 7), when the 

jack force was increased from J8 to J9 to bring the jack force to 

the same level as J7, the force in the splice plates increased 

only about one-third as much, which would be consistent with an 

assumption of friction forces developing. 

Referring to Fig. 7, it is unlikely that relative tension 

flange displacement began with nearly zero jack loads as shown. 

Although no confirming data exists, it is more likely that, due 

to· friction, the jack loads reached 100 to 200 kips before flange 

displacement was observed. Thus the vertical difference between 

the two curves in Fig. 7 varies from about 200 kips at low dis­

placement to about 400 kips at the higher displacements. This 

difference can be explained by the presence of friction forces 

at the ends of the splice plates which increase as the jack loads 

and bending of the splice plates increase. 
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2. The strain gages on the splice plates (Fig. 4) were placed in 

the field. The splice plates were not calibrated, thus some 

inaccuracy is possible in the measurement of the splice plate 

forces. However, errors were minimized by placing four gages on 

the edges of each splice plate and averaging the readings at each 

displacement increment. 

3. Differential temperature conditions between the concrete slab and 

the steel superstructure also introduces stresses into the 3-span 

continuous structure. This is particularly noticeable from the 

differences between the splice plate force at SlO and Sll. As 

noted this measured increase was observed over a thirteen-hour 

period (6:30p.m. to 7:30a.m.) \vhen the air temperature decreased 

by 15°F. Measurements during June 1977 further confirmed these 

observations. 

4.2 Stress Distribution in Girders 

4.2.1 Finite Element Model - G4 

Figure 10 shows the finite element (FE) model used to determine 

the stress distribution on section 1 of girder G4. A portion of girder 

G4, south of the fracture cross section, was selected for modeling. The 

web of girder G4 is modeled by 320 plane stress elements while 64 truss 

or bar elements model the top and bottom flanges. The horizontal roller 

support at the fracture cross section accounts for the continuity of the 

steel top flange and concrete slab above the fracture location. The two 

vertical roller supports are arbitrarily located sufficiently distant 

from section 1 so as to have a negligible effect on the stress 
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distribution at section 1 which lies in a region of constant bending 

moment. 

Figure lOb is an enlargement of the shaded area in Fig. lOa and 

shows the distribution of bolt forces applied to the girder. The bolt 

forces were applied by the flange splice plates during jacking. They 

are consistent with the final measured 1674 kip force in the splice 

plates rather than the assumed 1950 kip jacking force which was used 

in the splice plate analysis of Ref. 2. 

The FE model of girder G4 was used to analyze three different 

cross sections: (1) the steel girder alone; (2) composite section 

consisting of steel girder and 8-1/2 ft wide slab; and, (3) composite 

section consisting of steel girder and 22 ft wide slab. To simplify 

the analysis, the transformed concrete areas of the composite sections 

were included in the areas of the top flange elements with no modifi­

cation of the depth of the cross section. This simplification is not 

expected to have a significant affect on the analysis. 

Figure 11 shows the t\vo composite cross sections which were used 

in the FE analysis. The smaller cross section was selected to agree 

with Ref. 3 which used an 8 ft-6 in. slab together with a modular ratio, 

n, of 10 in predicting strains at sections 1 and 2 of girder G4 (Fig. 3) 

under composite action. The 22 ft slab width was selected to represent 

one-half the concrete roadway between girders G3 and G4 and to include 

the mass of concrete forming the railing wall shown on the right side of 

Fig. 5. A modular ratio of 8, corresponding to 4000 psi concrete, was 

used in transforming the 22 ft wide slab. 
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4.2.2 Girder G4 

The three stress profiles obtained from the FE analysis for 

section 1 of girder G4 are plotted in Fig. Ba. Good agreement is 

obtained between the FE analysis using the 22 ft wide slab and the 

measured stress distribution under the 1674 kip force in the splice 

plates. The FE analyses using the 8 ft-6 in. slab width and for the 

steel girder alone differ greatly from the measured stress profile above 

the neutral axis. Although the bridge superstructure is noncomposite, 

the response of girder G4 during the jacking operation indicates that 

nearly full composite action existed between the steel girder and 

coricrete slab throughout the jacking operation. 

The measured stress profiles in Fig. Ba are fitted to the average 

stresses recorded by the three pairs of strain gages on section 1 of G4 

as discussed in Art. 3.2.1. Under ideal plane bending conditions the 

flexural stresses obtained from the individual strain gages in a pair 

of gages would be equal. The stresses plotted in Fig. Sa show a spread 

of up to 5 ksi for the pair of gages on the top flange. A smaller 

difference exists in the bottom flange. The difference can be attri­

buted mainly to lateral bending of the top flange during the jacking 

operation. As mentioned earlier lateral bending was introduced vktile 

pulling the compression flange of girder G4 west to bring it to its 

original position relative to the concrete slab in the vicinity of the 

fracture cross section. In addition the 'tension flange would move 

laterally as it realigned under the applied jack loads. 
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The pair of strain gages on the bottom flange at section 2 of 

girder G4 also exhibit a smaller stress differential which also can be 

attributed to lateral bending. The single strain gages on the web and 

top flange at section 2 do not perm:it an averaging of the measured 

stresses. Thus, the measured stress profiles sho\vn in Fig. 8b are 

unable to completely account for the lateral bending of girder G4. 

No FE analysis was performed for section 2. 

Figures Sa and 8b also include predicted stress profiles from 

Ref. 3 based upon an expected total jacking force of 1950 kips. The 

values given in Ref. 3 were also modified to shmv predicted stress 

profiles at the 1674 kip level. The composite section used in Ref. 3 

included a slab \vidth of 8-1/2 ft (Fig. 11). 

4.2.3 Girders G2 and G3 

The measured stress profiles at section 1 of girders G2 and G3 

are presented in Figs. 9a and 9b. The stress differential across the 

bottom flange of each girder is believed due to lateral bending caused 

by alignment of girder G4 during the jacking operation. Since single 

gages YJer.e placed on the webs and top flange the average flexural stress 

at these locations cannot be obtained. Only one bottom flange strain 

gage on girder G2 was operational at the 1674 kip load level. 

Figures 9a and 9b also include predicted stress profiles from 

Ref. 3 based upon an expected total jacking force of 1950 kips. The 

values given in Ref. 3 were also modified to show predicted stress 
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profiles also at the 1674 kip level. The composite section used in 

Ref. 3 included a slab width of 8-1/2 ft (Fig. 11). 

The measured top flange stresses shown in Fig. 9a and 9b are 

less than stresses predicted on the basis of composite action using the 

8-1/2 ft slab width. Thus, the amount of concrete contributing to the 

composite action of girders G2 and G3 was obviously greater than the 

8-1/2 ft width assumed in Ref. 3, appears closer to the 22 ft slab 

(half-width) assumed in the FE analysis of girder G4. 
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5 • CONCLUSIONS 

During the jacking operation, the measurement of the forces -in 

the tension flange splice plates provided an independent check of the 

total jacking force. The difference between the measured splice plate 

force and the hydraulic jack force is attributed primarily to friction 

forces and to temperature effects. Because of friction between the 

splice plates and the flange, stress changes due to temperature fluc­

tuations can occur in the splice plates at the fracture cross section 

without influencing the hydraulic pressure in the jacks. 

The strains in three of the four main girders of the bridge and 

in selected floor beam truss members and bottom lateral bracing members 

were recorded during the jacking operation. The measured stress distri­

bution in the fascia girder near the fracture cross section shows excel­

lent agreement with a finite element analysis of the girder under the 

jacking forces applied. 
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Table 1 Measured and Computed Strains and Stresses in Selected MembeYs of 
the Floor Beam Truss and Bottom Lateral Bracing System 

Measured 

685 kips 1305 kips 
-· ··- -

e (J e: (J 

)..lin/in ksi )..lin/in ksi 

(1) (2) (3) (4) 

- 64 -1.9 -176 - 5.2 

+175 +5.2 +337 + 9.9 

+ 15 +0.4 + 51 + 1.5 

+296 +8. 7 +582 +17 .2 

+225 +6.6 +446 +13.2 

-116 - 3.4 -182 - 5.4 

Ref. 3 

1674 kips 1674 kips 1950 
,__. . 

e 
)..lin/in 

(5) 

-252 

+372 

- 68 

+830 

+670 

-238 

(J e: 
ksi ]1 in/ in 

(6) (7) 

- 7. t.~ - 630 

+11.0 +1186 

- 2.0 + 87 

+24.5 +1241 

+19.8 +622 

- 7.0 -

CY e: 
ksi )..1 in/ in 

(8) (9) 

-18.6 - 734 

+35.0 +1381 

+ 2.6 + 101 

+36.6 +1446 

+18.3 + 725 

- -

Bottom 
Lateral Bracing 

Bottom ~ 
FlangeG4)~ 

. I 

Q) 

kips 

(J 

ksi 

( 10) 

-21.7 

+40. 7 

+ 3.0 

+42. 7 

+21.4 

-

Plan of Bottom Lateral Bracing 
(Fig. 3) 

Elevation of Floor Beam Truss (Sect CD Fig. 3) 

'. 

. 
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Fig. 2 Hqrizontal Hydraulic Jacking Arrangement Mounted on Tension 
Flange of Girder G4 
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Fig. 3 Instrumentation of Bridge Members 
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Fig. 4 Instrumentation of Splice Plates 
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Fig. 5 Instrumentation Van Parked on West Side of 
Bridge (Over girder G2) 

Fig. 6 Switch Boxes and Self-balancing Strain 
Recorder Inside Instrumentation Van 
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Fig. 7 Relationship between Measured Force in Splice Plates and Force 
in Hydraulic Jacks versus the Relative Closing 

Displacement of the Tension Flange 
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Fig. 8 Stress Distribution in Girder G4 
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Fig. 11 Composite Girder Cross Section Used 
in Finite Element Analysis 
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