294 research outputs found

    Subtelomeric I-Scel-Mediated Double-Strand Breaks Are Repaired by Homologous Recombination in Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a I cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-Scel meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Centroccidental Lisandro Alvarado, Lab Genet Mol Dr Yunis Turbay, Ciencias Salud, Barquisimeto, VenezuelaNIAID, Lab Malaria & Vector Res, NIH, Rockville, MD USAUniv Fed Sao Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Sao Paulo, BrazilConsejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, Lab Biol Mol Enfermedad Chagas, Buenos Aires, DF, ArgentinaJ Craig Venter Inst, Dept Infect Dis, Rockville, MD USAFdn Inst Estudios Avanzados, Ctr Biotecnol, Caracas, VenezuelaUniv Estadual Campinas, Fac Ciencias Med, Dept Patol Clin, Campinas, SP, BrazilDepartamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, BrazilFAPESP: 11/51693-0FAPESP: 11/51475-3CNPq: 306591/2015-4Web of Scienc

    Socioecological factors influencing women\u27s HIV risk in the United States: qualitative findings from the women\u27s HIV SeroIncidence study (HPTN 064).

    Get PDF
    BACKGROUND: We sought to understand the multilevel syndemic factors that are concurrently contributing to the HIV epidemic among women living in the US. We specifically examined community, network, dyadic, and individual factors to explain HIV vulnerability within a socioecological framework. METHODS: We gathered qualitative data (120 interviews and 31 focus groups) from a subset of women ages 18-44 years (N = 2,099) enrolled in the HPTN 064 HIV seroincidence estimation study across 10 US communities. We analyzed data from 4 diverse locations: Atlanta, New York City (the Bronx), Raleigh, and Washington, DC. Data were thematically coded using grounded theory methodology. Intercoder reliability was assessed to evaluate consistency of team-based coding practices. RESULTS: The following themes were identified at 4 levels including 1) exosystem (community): poverty prevalence, discrimination, gender imbalances, community violence, and housing challenges; 2) mesosystem (network): organizational social support and sexual concurrency; 3) microsystem (dyadic): sex exchange, interpersonal social support, intimate partner violence; and 4) individual: HIV/STI awareness, risk taking, and substance use. A strong theme emerged with over 80 % of responses linked to the fundamental role of financial insecurity underlying risk-taking behavioral pathways. CONCLUSIONS: Multilevel syndemic factors contribute to women\u27s vulnerability to HIV in the US. Financial insecurity is a predominant theme, suggesting the need for tailored programming for women to reduce HIV risk. TRIAL REGISTRATION: Clinicaltrials.gov, NCT00995176

    Prevalence and Correlates of Knowledge of Male Partner HIV Testing and Serostatus Among African-American Women Living in High Poverty, High HIV Prevalence Communities (HPTN 064)

    Get PDF
    Knowledge of sexual partners' HIV infection can reduce risky sexual behaviors. Yet, there are no published studies to-date examining prevalence and characteristics associated with knowledge among African-American women living in high poverty communities disproportionately affected by HIV. Using the HIV Prevention Trial Network's (HPTN) 064 Study data, multivariable logistic regression was used to examine individual, partner, and partnership-level determinants of women's knowledge (n=1,768 women). Results showed that women's demographic characteristics alone did not account for the variation in serostatus awareness. Rather, lower knowledge of partner serostatus was associated with having two or more sex partners (OR=0.49, 95%CI: 0.37-0.65), food insecurity (OR=0.68, 95%CI: 0.49-0.94), partner age>35 (OR=0.68, 95%CI: 0.49-0.94), and partner concurrency (OR=0.63, 95%CI: 0.49-0.83). Access to financial support (OR=1.42, 95%CI: 1.05-1.92) and coresidence (OR=1.43, 95%CI: 1.05-1.95) were associated with higher knowledge of partner serostatus. HIV prevention efforts addressing African-American women's vulnerabilities should employ integrated behavioral, economic, and empowerment approaches

    Challenges of a Hidden Epidemic: HIV Prevention Among Women in the United States

    Get PDF
    HIV/AIDS trends in the United States depict a concentrated epidemic with hot spots that vary by location, poverty, race/ethnicity, and transmission mode. HIV/AIDS is a leading cause of death among US women of color; two thirds of new infections among women occur in black women, despite the fact that black women account for just 14% of the US female population. The gravity of the HIV epidemic among US women is often not appreciated by those at risk as well as by the broader scientific community. We summarize the current epidemiology of HIV/AIDS among US women and discuss clinical, research, and public health intervention components that must be brought together in a cohesive plan to reduce new HIV infections in US women. Only by accelerating research and programmatic efforts will the hidden epidemic of HIV among US women emerge into the light and come under control

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Characteristics of Multiple and Concurrent Partnerships Among Women At High Risk for HIV Infection

    Get PDF
    We examined parameters of sexual partnerships, including respondents’ participation in concurrency, belief that their partner had concurrent partnerships (partners’ concurrency), and partnership intervals, among the 2,099 women in HIV Prevention Trials Network 064, a study of women at high risk for HIV infection, in ten US communities

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore