22 research outputs found

    E6 and E7 from Beta Hpv38 Cooperate with Ultraviolet Light in the Development of Actinic Keratosis-Like Lesions and Squamous Cell Carcinoma in Mice

    Get PDF
    Cutaneous beta human papillomavirus (HPV) types appear to be involved in the development of non-melanoma skin cancer (NMSC); however, it is not entirely clear whether they play a direct role. We have previously shown that E6 and E7 oncoproteins from the beta HPV type 38 display transforming activities in several experimental models. To evaluate the possible contribution of HPV38 in a proliferative tissue compartment during carcinogenesis, we generated a new transgenic mouse model (Tg) where HPV38 E6 and E7 are expressed in the undifferentiated basal layer of epithelia under the control of the Keratin 14 (K14) promoter. Viral oncogene expression led to increased cellular proliferation in the epidermis of the Tg animals in comparison to the wild-type littermates. Although no spontaneous formation of tumours was observed during the lifespan of the K14 HPV38 E6/E7-Tg mice, they were highly susceptible to 7,12-dimethylbenz(a)anthracene (DMBA)/12-0-tetradecanoylphorbol-13-acetate (TPA) two-stage chemical carcinogenesis. In addition, when animals were exposed to ultraviolet light (UV) irradiation, we observed that accumulation of p21WAF1 and cell-cycle arrest were significantly alleviated in the skin of Tg mice as compared to wild-type controls. Most importantly, chronic UV irradiation of Tg mice induced the development of actinic keratosis-like lesions, which are considered in humans as precursors of squamous cell carcinomas (SCC), and subsequently of SCC in a significant proportion of the animals. In contrast, wild-type animals subjected to identical treatments did not develop any type of skin lesions. Thus, the oncoproteins E6 and E7 from beta HPV38 significantly contribute to SCC development in the skin rendering keratinocytes more susceptible to UV-induced carcinogenesis

    Human papillomavirus type 38 alters wild-type p53 activity to promote cell proliferation via the downregulation of integrin alpha 1 expression.

    No full text
    Tumor suppressors can exert pro-proliferation functions in specific contexts. In the beta human papillomavirus type 38 (HPV38) experimental model, the viral proteins E6 and E7 promote accumulation of a wild-type (WT) p53 form in human keratinocytes (HKs), promoting cellular proliferation. Inactivation of p53 by different means strongly decreases the proliferation of HPV38 E6/E7 HKs. This p53 form is phosphorylated at S392 by the double-stranded RNA-dependent protein kinase PKR, which is highly activated by HPV38. PKR-mediated S392 p53 phosphorylation promotes the formation of a p53/DNMT1 complex, which inhibits expression of integrin alpha 1 (ITGA1), a repressor of epidermal growth factor receptor (EGFR) signaling. Ectopic expression of ITGA1 in HPV38 E6/E7 HKs promotes EGFR degradation, inhibition of cellular proliferation, and cellular death. Itga1 expression was also inhibited in the skin of HPV38 transgenic mice that have an elevated susceptibility to UV-induced skin carcinogenesis. In summary, these findings reveal the existence of a specific WT p53 form that displays pro-proliferation properties

    Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice.

    No full text
    Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC. Here, we further investigate the potential role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38 E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg skin lesions closely resembles that detected in human NMSC, with the highest mutation rate in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion of the viral oncogenes after development of UV-induced skin lesions did not affect the tumour growth. Together, these findings support the concept that beta HPV types act only at an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation

    p21<sup>WAF1</sup> and Ki-67 levels in the skin of wild-type and K14 HPV38 E6/E7-Tg mice after UVB irradiation.

    No full text
    <p>Wild-type and Tg animals were irradiated up to 5 times as described in Materials and <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002125#s4" target="_blank">Methods</a>. 24 hours after the last irradiation, mice were sacrificed and skin tissue was analyzed by immuno-histochemistry. (A) Representative Ki-67 and p21<sup>WAF1</sup> immunostainings of skin from wild-type and Tg mice non-exposed (0×) or four time (4×) exposed to UVB. (B) Quantification of p21<sup>WAF1</sup> and Ki-67-positive cells in skin of wild-type and Tg mice before and after UVB irradiation. The percentage of p21<sup>WAF1</sup> and Ki-67-positive cells in the epidermis was determined as described in the legend of <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002125#ppat-1002125-g003" target="_blank">Figure 3</a>. The differences between the percentages of p21<sup>WAF1</sup> or Ki-67-positive cells in the HPV38 E6/E7 Tg mice (lines 183 and 187) versus the FVB/N non-Tg mice are statistically significant (* = <i>p</i><0.05, ** = <i>p</i><0,001) as determined by Student's t-test.</p

    Histological analysis of skin specimens from wild-type FVB/N and Tg mouse lines.

    No full text
    <p>Representative pictures (original magnification 40Ă—) of HE-stained sections of paraffin-embedded tissues are shown: (A) ear (left panel) and dorsal skin (right panel) of wild-type FVB/N and Tg mice of the lines 183, and 187. (B) Dysplastic ear skin of K14 HPV38 E6/E7-Tg mice.</p
    corecore