105 research outputs found

    Phase noise characterization of sub-hertz linewidth lasers via digital cross correlation

    Full text link
    Phase noise or frequency noise is a key metrics to evaluate the short term stability of a laser. This property is of a great interest for the applications but delicate to characterize, especially for narrow line-width lasers. In this letter, we demonstrate a digital cross correlation scheme to characterize the absolute phase noise of sub-hertz line-width lasers. Three 1,542 nm ultra-stable lasers are used in this approach. For each measurement two lasers act as references to characterize a third one. Phase noise power spectral density from 0.5 Hz to 0.8 MHz Fourier frequencies can be derived for each laser by a mere change in the configuration of the lasers. This is the first time showing the phase noise of sub-hertz line-width lasers with no reference limitation. We also present an analysis of the laser phase noise performance.Comment: 4 pages, 5 figure

    Excess noise and photo-induced effects in highly reflective crystalline mirror coatings

    Full text link
    Thermodynamically induced length fluctuations of high-reflectivity mirror coatings put a fundamental limit on sensitivity and stability of precision optical interferometers like gravitational wave detectors and ultra-stable lasers. The main contribution - Brownian thermal noise - is related to the mechanical loss of the coating material. Owing to their low mechanical losses, Al\textsubscript{0.92}Ga\textsubscript{0.08}As/GaAs crystalline mirror coatings are expected to reduce this limit. At room temperature they have demonstrated lower Brownian thermal noise than with conventional amorphous coatings. %However, no detailed study on the noise constituents from these coatings in optical interferometers has been conducted. We present a detailed study on the spatial and temporal noise properties of such coatings by using them in two independent cryogenic silicon optical Fabry-Perot resonators operated at 4 K, 16 K and 124 K. We confirm the expected low Brownian thermal noise, but also discover two new noise sources that exceed the Brownian noise: birefringent noise that can be canceled via polarization averaging and global excess noise (10 dB above Brownian noise). These new noise contributions are a barrier to improving ultra-stable lasers and the related performance of atomic clocks, and potentially limit the sensitivity of third-generation gravitational wave detectors. Hence, they must be considered carefully in precision interferometry experiments using similar coatings based on semiconductor materials

    Quantum cascade laser frequency stabilisation at the sub-Hz level

    Full text link
    Quantum Cascade Lasers (QCL) are increasingly being used to probe the mid-infrared "molecular fingerprint" region. This prompted efforts towards improving their spectral performance, in order to reach ever-higher resolution and precision. Here, we report the stabilisation of a QCL onto an optical frequency comb. We demonstrate a relative stability and accuracy of 2x10-15 and 10-14, respectively. The comb is stabilised to a remote near-infrared ultra-stable laser referenced to frequency primary standards, whose signal is transferred via an optical fibre link. The stability and frequency traceability of our QCL exceed those demonstrated so far by two orders of magnitude. As a demonstration of its capability, we then use it to perform high-resolution molecular spectroscopy. We measure absorption frequencies with an 8x10-13 relative uncertainty. This confirms the potential of this setup for ultra-high precision measurements with molecules, such as our ongoing effort towards testing the parity symmetry by probing chiral species

    Optical Atomic Clock Comparison through Turbulent Air

    Full text link
    We use frequency comb-based optical two-way time-frequency transfer (O-TWTFT) to measure the optical frequency ratio of state-of-the-art ytterbium and strontium optical atomic clocks separated by a 1.5 km open-air link. Our free-space measurement is compared to a simultaneous measurement acquired via a noise-cancelled fiber link. Despite non-stationary, ps-level time-of-flight variations in the free-space link, ratio measurements obtained from the two links, averaged over 30.5 hours across six days, agree to 6×10196\times10^{-19}, showing that O-TWTFT can support free-space atomic clock comparisons below the 101810^{-18} level
    corecore