49 research outputs found

    Trophic state and seasonal dynamics of phytoplankton communities in two sand-pit lakes at different successional stages

    Get PDF
    The seasonal and inter-annual dynamics of phytoplankton in two Italian sand-pit lakes have been analysed over three years (2004-2006). The studied lakes, Ca' Morta (CM) and Ca' Stanga (CS), have a common origin and are contiguous, but are of different ages and have been managed in different ways. CM was created in 2002 and was still being dredged during the study period, while sand quarrying in CS began in 1998 and ended at the beginning of the study period. These conditions were thought to be of particular interest in assessing the influence of dredging activities on algal assemblages. Physical and chemical water parameters were also analysed to characterise the two lakes and investigate the effects of hydro-chemical features on phytoplankton. CS was stratified from April to October each year during the study period, while CM showed weaker thermal stratification. Conductivity, dissolved nitrate and dissolved reactive silica concentrations were greater in CM than in CS. The mixing depth/euphotic depth ratio was also higher in CM, probably because of water column mixing induced by hydraulic dredging. Overall, 185 phytoplankton taxa were found, of which ca 50% were present in both lakes. No significant differences in species richness were observed between lakes, but the decreasing trend of Simpson index values measured in CS showed a reduction in biodiversity after the excavation phase. Phytoplankton biomass was higher in CS than in CM, the latter being oligo-mesotrophic and the former mesotrophic. Diatoms and dinoflagellates were the dominant taxa in both lakes. The main differences in phytoplankton assemblages were related to the persistence of chryptophytes and chlorophytes in CM. Multivariate analyses support the hypothesis that different thermal patterns induced by dredging activities, along with certain physico-chemical parameters of the water, were the major factors shaping phytoplankton communities

    Variability in Environmental Conditions Strongly Impacts Ostracod Assemblages of Lowland Springs in a Heavily Anthropized Area

    Get PDF
    The Po river plain (Northern Italy) hosts artificial, lowland springs locally known as fontanili, which provide important ecosystem services in an area dominated by intensive agricultural activities. Here we present a study carried out in 50 springs. Each spring was visited once from October 2015 to January 2016. The sampled sites were selected to include springs studied in 2001 and 2004, to evaluate changes in water quality and ostracod assemblages that possibly occurred over a period of 10–15 years, and explore the relationships between ostracod community composition and water physical and chemical variables. Our results showed a decrease in the chemical water quality especially, in springs south of the Po river, evidenced by high nitrate levels. Most of the studied springs showed a relevant decrease in dissolved reactive silica, probably related to recent transformations of either agricultural practices or crop typology. Ostracods were mostly represented by common and tolerant species, and communities were characterized by low alpha diversity and high species turnover. Water temperature and mineralization level were the most influential variables in structuring the ostracod communities. We stress the need to implement conservation and restoration measures for these threatened ecosystems, to regain their role as ecosystem services providers

    Denitrification, Nitrogen Uptake, and Organic Matter Quality Undergo Different Seasonality in Sandy and Muddy Sediments of a Turbid Estuary

    Get PDF
    The interaction between microbial communities and benthic algae as nitrogen (N) regulators in poorly illuminated sediments is scarcely investigated in the literature. The role of sediments as sources or sinks of N was analyzed in spring and summer in sandy and muddy sediments in a turbid freshwater estuary, the Curonian Lagoon, Lithuania. Seasonality in this ecosystem is strongly marked by phytoplankton community succession with diatoms dominating in spring and cyanobacteria dominating in summer. Fluxes of dissolved gas and inorganic N and rates of denitrification of water column nitrate (Dw) and of nitrate produced by nitrification (Dn) and sedimentary features, including the macromolecular quality of organic matter (OM), were measured. Shallow/sandy sites had benthic diatoms, while at deep/muddy sites, settled pelagic microalgae were found. The OM in surface sediments was always higher at muddy than at sandy sites, and biochemical analyses revealed that at muddy sites the OM nutritional value changed seasonally. In spring, sandy sediments were net autotrophic and retained N, while muddy sediments were net heterotrophic and displayed higher rates of denitrification, mostly sustained by Dw. In summer, benthic oxygen demand increased dramatically, whereas denitrification, mostly sustained by Dn, decreased in muddy and remained unchanged in sandy sediments. The ratio between denitrification and oxygen demand was significantly lower in sandy compared with muddy sediments and in summer compared with spring. Muddy sediments displayed seasonally distinct biochemical composition with a larger fraction of lipids coinciding with cyanobacteria blooms and a seasonal switch from inorganic N sink to source. Sandy sediments had similar composition in both seasons and retained inorganic N also in summer. Nitrogen uptake by microphytobenthos at sandy sites always exceeded the amount loss via denitrification, and benthic diatoms appeared to inhibit denitrification, even in the dark and under conditions of elevated N availability. In spring, denitrification attenuated N delivery from the estuary to the coastal area by nearly 35%. In summer, denitrification was comparable (~100%) with the much lower N export from the watershed, but N loss was probably offset by large rates of N-fixation

    Groundwater is a hidden global keystone ecosystem

    Get PDF
    Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.info:eu-repo/semantics/publishedVersio

    Benthic processes in fresh water fluffy sediments undergoing resuspension

    No full text
    In the Po river plain relict freshwater wetlands are characterised by a low free water to emergent macrophyte surface ratio, rapid infilling and fluffy sediments, undergoing frequent resuspension. Particle mixing should alter the steep gradients of dissolved gas, nutrient and organic matter quality that generally characterise sediments, with implications for benthic processes. Sediment features and solute fluxes were studied from December 2003 to February 2005 within the Busatello swamp complex (Northern Italy) by means of a combination of core incubation, porewater extraction and microprofiling. At the study site, along a 10 cm vertical profile, sediment organic matter content (32.5%), porosity (0.94) and density (1.02 g cm–3) were nearly constant. Oxygen demand measured by dark core incubation (12.7-56.9 mmol m–2 d–1) was strongly correlated with water temperature. Rates agreed reasonably well with diffusive oxygen fluxes calculated from microprofiles while ammonium and phosphorus regeneration rates predicted from porewater gradients (-309.3-43.4 and -0.1-0.7 μmol m–2 d–1, respectively) were significantly lower than rates measured via core incubations (-129.8-5420.5 and -120.4-35.4 μmol m–2 d–1, respectively). This is a probable consequence of insufficient vertical resolution of nutrient profiles and lack of steady state conditions. A sediment resuspension experiment, carried out under controlled laboratory conditions, indicated large instantaneous oxygen and nitrate consumption, a transient increase of denitrification rates and the rapid release of ammonium and soluble reactive phosphorus. In unconsolidated sediments, resuspension and mixing of sediment particles are key processes regulating mineralisation rates and benthic-pelagic coupling

    Influence of Potamogeton pectinatus and microphytobenthos on benthic metabolism in a freshwater littoral sediment in an agricultural landscape: N assimilation vs N removal

    No full text
    The influence of Potamogeton pectinatus colonization on benthic nitrogen dynamics was quantified in the littoral zone of a lowland pit lake with high nitrate availability (~200 µM). Our hypothesis was that in aquatic environments where nitrogen availability is not limiting, colonization by rooted macrophytes changes the dynamics of the benthic nitrogen cycle, stimulating N assimilation and denitrification, and increasing the system capacity to mitigate external nitrogen loads. To test this hypothesis we quantified and compared light and dark seasonal variations of benthic metabolism, dissolved inorganic nitrogen fluxes, denitrification and N assimilation rates in an area colonized by P. pectinatus and a reference site colonized by microphytobenthos. In both areas the benthic system was net autotrophic and a sink for dissolved inorganic nitrogen (2241-2644 mmol m-2 y-1). Plant colonization increased nitrogen losses via denitrification by 30% compared to the unvegetated area. In contrast to what is generally observed in coastal marine systems, where the presence of rooted macrophytes limits denitrification rates, under the very high nitrate concentrations in the studied lake, both denitrification (1237-1570 mmol m-2 y-1) and N-assimilation (1039-1095 mmol m-2 y-1) played important and comparable roles in the removal of dissolved inorganic nitrogen from the water column

    Do oxic–anoxic transitions constrain organic matter mineralization in eutrophic freshwater wetlands?

    No full text
    This study aims at investigating decomposition processes in wetlands that are daily or seasonally exposed to intermittent oxic and anoxic conditions. We hypothesized that in wetland ecosystems where anoxia regularly establishes, decomposition rates are not affected by oxygen shortage, especially when nitrates are available. Monitoring and experiments were performed from December 2003 to January 2005 in one of the widest (81 ha) freshwater wetlands in the Po river floodplain (Natural Reserve Paludi del Busatello, Italy). Intact sediment cores were sampled on a seasonal basis. Sediment–water fluxes of oxygen, dissolved inorganic carbon, methane, and inorganic nitrogen were determined under oxic and anoxic conditions. Oxic–anoxic transitions always resulted in enhanced ammonium, dissolved inorganic carbon, and methane effluxes. At high temperatures, the methane release from sediments was inversely related to both nitrate concentrations and uptake. Likely, nitrate can compensate for the oxygen deficiency while maintaining an oxidative metabolism, either supporting microbial decomposition as an electron acceptor or stimulating the oxidation of the byproducts of the anaerobic metabolism, e.g., methane. This is a key point as the number of temperate wetlands with concurrent nitrate pollution and oxygen shortage is increasing throughout the world

    Seasonal nitrogen and phosphorus dynamics during benthic clam and sospende mussel cultivation

    No full text
    Effects of suspended mussel and infaunal clam cultivation on sediment characteristics, and benthic organic and inorganic nitrogen and phosphorus fluxes were compared in a shallow coastal lagoon. The two species had different impacts on sediment features, but both created "hotspots" of nutrient fluxes with annual N and P regeneration rates being 4.9 and 13.5 (mussel) and 4.5 and 14.9 (clams) fold greater than those of unfarmed control sediments. Mussel farming also caused considerable nutrient regeneration within the water column with the mussel ropes contributing similar to 25% of total inorganic N and P production and at times dominating the sediments (e.g. 95% of SRP production in summer and 45% of DIN production in winter). Such nutrient regeneration rates seriously question the proposal that suspension-feeding bivalves act as a eutrophication buffer, especially during summer when nutrient regeneration rates are maximal, but other nutrient sources (freshwater run-off and unfarmed sediments) are at their lowest. (C) 2011 Elsevier Ltd. All rights reserved

    Trophic state and seasonal dynamics of phytoplankton communities in two sand-pit lakes at different successional stages

    No full text
    The seasonal and inter-annual dynamics of phytoplankton in two Italian sand-pit lakes have been analysed over three years (2004-2006). The studied lakes, Ca' Morta (CM) and Ca' Stanga (CS), have a common origin and are contiguous, but are of different ages and have been managed in different ways. CM was created in 2002 and was still being dredged during the study period while sand quarrying in CS began in 1998 and ended at the beginning of the study period These conditions were thought to be of particular interest in assessing the influence of dredging activities on algal assemblages. Physical and chemical water parameters were also analysed to characterise the two lakes and investigate the effects of hydro-chemical features on phytoplankton. CS was stratified from April to October each year during the study period, while CM showed weaker thermal stratification. Conductivity, dissolved nitrate and dissolved reactive silica concentrations were greater in CM than in CS. The mixing depth/euphotic depth ratio was also higher in CM, probably because of water column mixing induced by hydraulic dredging. Overall. 185 phytoplankton taxa were found, of which ca 50% were present in both lakes. No significant diffrences in species richness were observed between lakes, but the decreasing trend of Simpson index values measured in CS showed a reduction in biodiversity after the excavation phose. Phytoplankton biomass was higher in CS than in CM, the latter being oligo-mesotrophic and the former mesotrophic. Diatoms and dinoflagellates were the dominant taxa in both lakes. The main differences in phytoplankton assemblages were related to the persistence of chryptophytes and chlorophytes in CM. Multivariate analyses support the hypothesis that different thermal patterns induced by dredging activities, along with certain physico-chemical parameters of the water, were the major factors shaping phytoplankton communities
    corecore