57 research outputs found

    Pathogenicity markers of Clostridium spp. in commercial turkeys

    Get PDF
    Since growth promoters ban in Europe, enteritis of different aetiologies (virus, bacteria and protozoa) are increasingly becoming the main cause of economic loss in commercial turkeys production. This study is focused on typing of Clostridium spp. isolated from samples of jejunum and ileum of 82 birds out of 17 turkeys flocks. The birds were 6-day to 104-day old, both male and female, with enteric disorders. The presence of toxin NetB was investigated. Multiplex PCR to detect cpa, cpb1, cpetx, cp1, cpb2 and cpe toxin genes were used for Clostridium typing. No lesions of necrotic enteritis were observed. Clostridium perfringens type A was isolated from 25 enteric samples, Clostridium difficile was found in 4 cases and Clostridium sordelli in one case. Clostridium perfringens was present from 6 to 104 days of age indicating its possible role in the enteric disorders of commercial turkeys. NetB toxin was found in no sample. 3 out of 4 isolates of Clostridium difficile were characterized by the presence of toxin genes

    Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes

    Get PDF
    Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with alpha-synuclein (alpha-syn) fibrils and their clearance. We found that microglia exposed to alpha-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer alpha-syn from overloaded microglia to neighboring naive microglia where the alpha-syn cargo got rapidly and effectively degraded. Lowering the alpha-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of alpha-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an on-demand functional network in order to improve pathogenic alpha-syn clearance

    SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans

    Get PDF
    Metabolic flexibility is an essential characteristic of eukaryotic cells in order to adapt to physiological and environmental changes. Especially in mammalian cells, the metabolic switch from mitochondrial respiration to aerobic glycolysis provides flexibility to sustain cellular energy in pathophysiological conditions. For example, attenuation of mitochondrial respiration and/or metabolic shifts to glycolysis result in a metabolic rewiring that provide beneficial effects in neurodegenerative processes. Ferroptosis, a non-apoptotic form of cell death triggered by an impaired redox balance is gaining attention in the field of neurodegeneration. We showed recently that activation of small-conductance calcium-activated K+ (SK) channels modulated mitochondrial respiration and protected neuronal cells from oxidative death. Here, we investigated whether SK channel activation with CyPPA induces a glycolytic shift thereby increasing resilience of neuronal cells against ferroptosis, induced by erastin in vitro and in the nematode C. elegans exposed to mitochondrial poisons in vivo. High-resolution respirometry and extracellular flux analysis revealed that CyPPA, a positive modulator of SK channels, slightly reduced mitochondrial complex I activity, while increasing glycolysis and lactate production. Concomitantly, CyPPA rescued the neuronal cells from ferroptosis, while scavenging mitochondrial ROS and inhibiting glycolysis reduced its protection. Furthermore, SK channel activation increased survival of C. elegans challenged with mitochondrial toxins. Our findings shed light on metabolic mechanisms promoted through SK channel activation through mitohormesis, which enhances neuronal resilience against ferroptosis in vitro and promotes longevity in vivo

    p73: A Multifunctional Protein in Neurobiology

    Get PDF
    p73, a transcription factor of the p53 family, plays a key role in many biological processes including neuronal development. Indeed, mice deficient for both TAp73 and ΔNp73 isoforms display neuronal pathologies, including hydrocephalus and hippocampal dysgenesis, with defects in the CA1-CA3 pyramidal cell layers and the dentate gyrus. TAp73 expression increases in parallel with neuronal differentiation and its ectopic expression induces neurite outgrowth and expression of neuronal markers in neuroblastoma cell lines and neural stem cells, suggesting that it has a pro-differentiation role. In contrast, ΔNp73 shows a survival function in mature cortical neurons as selective ΔNp73 null mice have reduced cortical thickness. Recent evidence has also suggested that p73 isoforms are deregulated in neurodegenerative pathologies such as Alzheimer’s disease, with abnormal tau phosphorylation. Thus, in addition to its increasingly accepted contribution to tumorigenesis, the p73 subfamily also plays a role in neuronal development and neurodegeneration

    Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling

    Get PDF
    Background: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. Results: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. Conclusion: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases

    Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer

    No full text
    Apoptosis-inducing factor (AIF) is a mitochondrial oxidoreductase that contributes to cell death programmes and participates in the assembly of the respiratory chain. Importantly, AIF deficiency leads to severe mitochondrial dysfunction, causing muscle atrophy and neurodegeneration in model organisms as well as in humans. The purpose of this review is to describe functions of AIF and AIF-interacting proteins as regulators of cell death and mitochondrial bioenergetics. We describe how AIF deficiency induces pathogenic processes that alter metabolism and ultimately compromise cellular homeostasis. We report the currently known AIFM1 mutations identified in humans and discuss the variability of AIFM1-related disorders in terms of onset, organ involvement and symptoms. Finally, we summarize how the study of AIFM1-linked pathologies may help to further expand our understanding of rare inherited forms of mitochondrial diseases. Keywords: Apoptosis-inducing factor (AIF), Cell death, Mitochondria, Mitochondrial diseases, Oxidative phosphorylation (OXPHOS

    Nuclear pore complex during neuronal degeneration: Cracking the last barrier!

    No full text
    In eukaryotic cells, the exchange of molecules between the genetic material within the nucleus and the cytosol occurs through the Nuclear Pore Complex (NPC), which is a large membrane-embedded assembly composed by multiple proteins named nucleoporins arranged around an aqueous channel. The bi-directional passive diffusion and the active transport of factors across the nuclear envelope are responsible for a variety of biological processes and they are controlled respectively by the size of the pore and the interaction between nucleoporins and karyopherins. Thus, it is not surprising that most of the degenerative programs induce cellular stress by altering the NPC composition or the binding between nucleoporins and docking factors. This facilitates the access of nuclear DNA to pro-death factors, amplify the detrimental cascade and finally play a role in the disassembly of the nuclear structure. Recently, we have shown that during calcium-mediated neuronal degeneration NPC components can be degraded with consequent increase of NPC channel permeability. Moreover, we proved that these changes occurred much earlier than the final disassembly of the nuclear envelope and they are mediated by calcium overload. Is the increase of NPC leakiness the executioner of the excitotoxic process or simply a final event of a cell condemned to death? Here we speculate the consequence of the nucleoporin loss, the alteration of nucleocytoplasmic transport and their contribution to neuronal demise

    Neuron-specific proteasome activation exerts cell non-autonomous protection against amyloid-beta (Aβ) proteotoxicity in Caenorhabditis elegans

    No full text
    Proteostasis reinforcement is a promising approach in the design of therapeutic interventions against proteinopathies, including Alzheimer's disease. Understanding how and which parts of the proteostasis network should be enhanced is crucial in developing efficient therapeutic strategies. The ability of specific tissues to induce proteostatic responses in distal ones (cell non-autonomous regulation of proteostasis) is attracting interest. Although the proteasome is a major protein degradation node, nothing is known on its cell non-autonomous regulation. We show that proteasome activation in the nervous system can enhance the proteasome activity in the muscle of Caenorhabditis elegans. Mechanistically, this communication depends on Small Clear Vesicles, with glutamate as one of the neurotransmitters required for the distal regulation. More importantly, we demonstrate that this cell non-autonomous proteasome activation is translated into efficient prevention of amyloid-beta (Αβ)-mediated proteotoxic effects in the muscle of C. elegans but notably not to resistance against oxidative stress. Our in vivo data establish a mechanistic link between neuronal proteasome reinforcement and decreased Aβ proteotoxicity in the muscle. The identified distal communication may have serious implications in the design of therapeutic strategies based on tissue-specific proteasome manipulation

    Ca(2+) signals and death programmes in neurons

    No full text
    Cell death programmes are generally defined by biochemical/genetic routines that are linked to their execution and by the appearance of more or less typical morphological features. However, in pathological settings death signals may engage complex and interacting lethal pathways, some of which are common to different cells, whereas others are linked to a specific tissue and differentiation pattern. In neurons, death programmes can be spatially and temporally segregated. Most importantly physiological Ca(2+) signals are essential for cell function and survival. On the other hand, Ca(2+) overload or perturbations of intracellular Ca(2+) compartmentalization can activate or enhance mechanisms leading to cell death. An imbalance between Ca(2+) influx and efflux from cells is the initial signal leading to Ca(2+) overload and death of ischaemic neurons or cardiomyocytes. Alterations of intracellular Ca(2+) storage can integrate with death signals that do not initially require Ca(2+), to promote processing of cellular components and death by apoptosis or necrosis. Finally, Ca(2+) can directly activate catabolic enzymes such as proteases, phospholipases and nucleases that directly cause cell demise and tissue damage

    Replication-Independent Histone Variant H3.3 Controls Animal Lifespan through the Regulation of Pro-longevity Transcriptional Programs

    No full text
    Chromatin structure orchestrates the accessibility to the genetic material. Replication-independent histone variants control transcriptional plasticity in postmitotic cells. The life-long accumulation of these histones has been described, yet the implications on organismal aging remain elusive. Here, we study the importance of the histone variant H3.3 in Caenorhabditis elegans longevity pathways. We show that H3.3-deficient nematodes have negligible lifespan differences compared to wild-type animals. However, H3.3 is essential for the lifespan extension of C. elegans mutants in which pronounced transcriptional changes control longevity programs. Notably, H3.3 loss critically affects the expression of a very large number of genes in long-lived nematodes, resulting in transcriptional profiles similar to wild-type animals. We conclude that H3.3 positively contributes to diverse lifespan-extending signaling pathways, with potential implications on age-related processes in multicellular organisms
    corecore