17 research outputs found

    Numerical Optimization of Plasmid DNA Delivery Combined with Hyaluronidase Injection for Electroporation Protocol

    Get PDF
    International audienceBackground and Objective: The paper focuses on the numerical strategies to optimize a plasmid DNA delivery protocol, which combines hyaluronidase and electroporation. Methods: A well-defined continuum mechanics model of muscle porosity and advanced numerical optimization strategies have been used, to propose a substantial improvement of a pre-existing experimental protocol of DNA transfer in mice. Our work suggests that a computational model might help in the definition of innovative therapeutic procedures, thanks to the fine tuning of all the involved experimental steps. This approach is particularly interesting in optimizing complex and costly protocols, to make in vivo DNA therapeutic protocols more effective. Results: Our preliminary work suggests that computational model might help in the definition of innovative therapeutic protocol, thanks to the fine tuning of all the involved operations. Conclusions: This approach is particularly interesting in optimizing complex and costly protocols for which the number of degrees of freedom prevents a experimental test of the possible configuration

    Effect of external PEEP in patients under controlled mechanical ventilation with an auto-PEEP of 5 cmH2O or higher.

    Get PDF
    In some patients with auto-positive end-expiratory pressure (auto-PEEP), application of PEEP lower than auto-PEEP maintains a constant total PEEP, therefore reducing the inspiratory threshold load without detrimental cardiovascular or respiratory effects. We refer to these patients as complete PEEP-absorbers. Conversely, adverse effects of PEEP application could occur in patients with auto-PEEP when the total PEEP rises as a consequence. From a pathophysiological perspective, all subjects with flow limitation are expected to be complete PEEP-absorbers, whereas PEEP should increase total PEEP in all other patients. This study aimed to empirically assess the extent to which flow limitation alone explains a complete PEEP-absorber behavior (i.e., absence of further hyperinflation with PEEP), and to identify other factors associated with it.One hundred patients with auto-PEEP of at least 5 cmH2O at zero end-expiratory pressure (ZEEP) during controlled mechanical ventilation were enrolled. Total PEEP (i.e., end-expiratory plateau pressure) was measured both at ZEEP and after applied PEEP equal to 80 % of auto-PEEP measured at ZEEP. All measurements were repeated three times, and the average value was used for analysis.Forty-seven percent of the patients suffered from chronic pulmonary disease and 52 % from acute pulmonary disease; 61 % showed flow limitation at ZEEP, assessed by manual compression of the abdomen. The mean total PEEP was 7 ± 2 cmH2O at ZEEP and 9 ± 2 cmH2O after the application of PEEP (p < 0.001). Thirty-three percent of the patients were complete PEEP-absorbers. Multiple logistic regression was used to predict the behavior of complete PEEP-absorber. The best model included a respiratory rate lower than 20 breaths/min and the presence of flow limitation. The predictive ability of the model was excellent, with an overoptimism-corrected area under the receiver operating characteristics curve of 0.89 (95 % CI 0.80-0.97).Expiratory flow limitation was associated with both high and complete PEEP-absorber behavior, but setting a relatively high respiratory rate on the ventilator can prevent from observing complete PEEP-absorption. Therefore, the effect of PEEP application in patients with auto-PEEP can be accurately predicted at the bedside by measuring the respiratory rate and observing the flow-volume loop during manual compression of the abdomen

    Effects of detomidine constant rate infusion on blood glucose and lactate in sevoflurane anesthetized horses

    Get PDF
    Background: The drugs that promote sedation, analgesia, and anesthesia, as inhalatory agents, phenothiazines, benzodiazepines, alpha-2 adrenergic agonists, and opioids, can promote different kinds of side effects. The concept of a balanced anesthesia in equine was developed in order to minimize adverse effects inherent to anesthesia, creating a combination of lower doses of these drugs in comparison with the doses of each one used alone. Alpha-2-adrenoceptor agonists such as xylazine, detomidine, and others, are drugs used for standing sedation, analgesia, and reduction of volatile anesthetic requirement in the equine as well as an agent used to maintenance of arterial blood pressure during anesthesia. Alpha-2 agonists works stimulating receptors of autonomic neurons inducing reduction of heart rate, cardiac output and vascular resistance, hypertension, behavioral changes, and inhibition of insulin secretion. This reduction in insulin levels increases blood glucose concentration in horses due to its lower utilization in insulin-dependent tissues, as muscular and adipose tissues. Muscular tissue is capable to maintain a constant lactate production even in a well oxygenated environment in order to maintain its cellular activity, especially in cases when glucose is not available. To evaluate the effect on blood glucose and lactate, horses were submitted to one hour of detomidine constant rate infusion during sevofl urane inhalatory anesthesia with controlled ventilation, in order to assess blood concentration of glucose and lactate Materials, Methods & Results: Four adult horses were studied. Detomidine 20 µg.kg-1 was used as premedication followed by an association of ketamine and diazepam intravenously as anesthetic induction. After intubation, sevofl urane was vaporized at approximately 2.3 V%. Mechanical ventilation was established. After stabilization, an intravenous continuous rate infusion (CRI) of detomidine 5 µg.kg.h-1 was started. Venous blood samples were collected before premedication, prior to detomidine continuous infusion, 20, 40, and 60 min after beginning of infusion, in order to determination of glucose and lactate serum concentrations. After 60 min of detomidine infusion, the horses were allowed to recovery. There was statistical signifi cant hyperglycemia in the horses under CRI of detomidine. There was no signifi cant increase in blood lactate, despite of the hyperlactatemia in some animals. Discussion: Detomidine CRI of 5 µg.kg.h-1 does increase blood glucose levels over normal values but not to levels that could be toxic to tissues, mainly CNS. With low levels of serum insulin, body tissues, mainly muscular and adipose tissues, are unable to capture this available blood glucose and these cells depend on lactate metabolism. The lactate serum concentrations below normal range observed in studied horses suggest that all lactate produced by the tissues is being utilized in the energetic metabolism. In according to many authors, lactate is produced and utilized for mitochondrias as energetic source even in fully oxygenated tissues, which seems to be what happened in this experiment. The present study helps to understand energetic metabolism in horses under general inhaled anesthesia with detomidine CRI, a selective alpha-2-adrenoceptor agonist. In order to better evaluate energetic metabolism during inhaled anesthesia under detomidine infl uence, other studies are suggested, as prolonged anesthesia duration to evaluate a longer adrenergic stimulus induced by detomidine. Besides, other investigations with detomidine CRI in horses submitted to surgical procedures could provide different responses in energetic metabolism

    Estimation Algorithm for a Hybrid PDE–ODE Model Inspired by Immunocompetent Cancer-on-Chip Experiment

    No full text
    The present work is motivated by the development of a mathematical model mimicking the mechanisms observed in lab-on-chip experiments, made to reproduce on microfluidic chips the in vivo reality. Here we consider the Cancer-on-Chip experiment where tumor cells are treated with chemotherapy drug and secrete chemical signals in the environment attracting multiple immune cell species. The in silico model here proposed goes towards the construction of a “digital twin” of the experimental immune cells in the chip environment to better understand the complex mechanisms of immunosurveillance. To this aim, we develop a tumor-immune microfluidic hybrid PDE–ODE model to describe the concentration of chemicals in the Cancer-on-Chip environment and immune cells migration. The development of a trustable simulation algorithm, able to reproduce the immunocompetent dynamics observed in the chip, requires an efficient tool for the calibration of the model parameters. In this respect, the present paper represents a first methodological work to test the feasibility and the soundness of the calibration technique here proposed, based on a multidimensional spline interpolation technique for the time-varying velocity field surfaces obtained from cell trajectories

    SARS-CoV-2—The Role of Natural Immunity: A Narrative Review

    No full text
    Background: Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. Aims: This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naĂŻve subjects. Material and Methods: through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. Results: nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. Conclusions: this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity

    Thromboelastography clot strength profiles and effect of systemic anticoagulation in COVID-19 acute respiratory distress syndrome: a prospective, observational study

    Get PDF
    Objective: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) infection may yield a hypercoagulable state with fibrinolysis impairment. We conducted a single-center observational study with the aim of analyzing the coagulation patterns of intensive care unit (ICU) COVID-19 patients with both standard laboratory and viscoelastic tests. The presence of coagulopathy at the onset of the infection and after seven days of systemic anticoagulant therapy was investigated. Patients and methods: Forty consecutive SARS-CoV-2 patients, admitted to the ICU of a University hospital in Italy between 29th February and 30th March 2020 were enrolled in the study, providing they fulfilled the acute respiratory distress syndrome criteria. They received full-dose anticoagulation, including Enoxaparin 0.5 mg\ub7kg-1 subcutaneously twice a day, unfractionated Heparin 7500 units subcutaneously three times daily, or low-intensity Heparin infusion. Thromboelastographic (TEG) and laboratory parameters were measured at admission and after seven days. Results: At baseline, patients showed elevated fibrinogen activity [rTEG-Ang 80.5\ub0 (78.7 to 81.5); TEG-ACT 78.5 sec (69.2 to 87.9)] and an increase in the maximum amplitude of clot strength [FF-MA 42.2 mm (30.9 to 49.2)]. No alterations in time of the enzymatic phase of coagulation [CKH-K and CKH-R, 1.1 min (0.85 to 1.3) and 6.6 min (5.2 to 7.5), respectively] were observed. Absent lysis of the clot at 30 minutes (LY30) was observed in all the studied population. Standard coagulation parameters were within the physiological range: [INR 1.09 (1.01 to 1.20), aPTT 34.5 sec (29.7 to 42.2), antithrombin 97.5% (89.5 to 115)]. However, plasma fibrinogen [512.5 mg\ub7dl-1 (303.5 to 605)], and D-dimer levels [1752.5 ng\ub7ml-1 (698.5 to 4434.5)], were persistently increased above the reference range. After seven days of full-dose anticoagulation, average TEG parameters were not different from baseline (rTEG-Ang p = 0.13, TEG-ACT p = 0.58, FF-MA p = 0.24, CK-R p = 0.19, CKH-R p = 0.35), and a persistent increase in white blood cell count, platelet count and D-dimer was observed (white blood cell count p &lt; 0.01, neutrophil count p = 0.02, lymphocyte count p &lt; 0.01, platelet count p = 0.13 &lt; 0.01, D-dimer levels p= 0.02). Conclusions: SARS-CoV-2 patients with acute respiratory distress syndrome show elevated fibrinogen activity, high D-dimer levels and maximum amplitude of clot strength. Platelet count, fibrinogen, and standard coagulation tests do not indicate a disseminated intravascular coagulation. At seven days, thromboelastographic abnormalities persist despite full-dose anticoagulation

    Assessment of factors related to auto-PEEP

    No full text
    BACKGROUND: Previous physiological studies have identified factors that are involved in auto-PEEP generation. In our study, we examined how much auto-PEEP is generated from factors that are involved in its development. METHODS: One hundred eighty-six subjects undergoing controlled mechanical ventilation with persistent expiratory flow at the beginning of each inspiration were enrolled in the study. Volume-controlled continuous mandatory ventilation with PEEP of 0 cm H2O was applied while maintaining the ventilator setting as chosen by the attending physician. End-expiratory and end-inspiratory airway occlusion maneuvers were performed to calculate respiratory mechanics, and tidal flow limitation was assessed by a maneuver of manual compression of the abdomen. RESULTS: The variable with the strongest effect on auto-PEEP was flow limitation, which was associated with an increase of 2.4 cm H2O in auto-PEEP values. Moreover, auto-PEEP values were directly related to resistance of the respiratory system and body mass index and inversely related to expiratory time/time constant. Variables that were associated with the breathing pattern (tidal volume, frequency minute ventilation, and expiratory time) did not show any relationship with auto-PEEP values. The risk of auto-PEEP >= 5 cm H2O was increased by flow limitation (adjusted odds ratio 17; 95% CI: 6-56.2), expiratory time/time constant ratio 15 cm H2O/L s (3; 1.3-6.9), age >65 y (2.8; 1.2-6.5), and body mass index >26 kg/m(2) (2.6; 1.1-6.1). CONCLUSIONS: Flow limitation, expiratory time/time constant, resistance of the respiratory system, and obesity are the most important variables that affect auto-PEEP values. Frequency expiratory time, tidal volume, and minute ventilation were not independently associated with auto-PEEP. Therapeutic strategies aimed at reducing auto-PEEP and its adverse effects should be primarily oriented to the variables that mainly affect auto-PEEP values
    corecore