48 research outputs found

    Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite

    Get PDF
    Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide sequences on magnesium-doped (Mg-doped) hydroxyapatite (HA) may regulate the homing of MSCs, and thus induce cell migration to a specific site, we covalently functionalized MgHA disks with two chemotactic/haptotactic factors: either the fibronectin fragment III1-C human (FF III1-C), or the peptide sequence Gly-Arg-Gly-Asp-Ser-Pro-Lys, a fibronectin analog that is able to bind to integrin transmembrane receptors. Preliminary biological evaluation of MSC viability, analyzed by 3-(4,5-dimethyl­thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, suggested that stem cells migrate to the MgHA disks in response to the grafted haptotaxis stimuli

    Voltammetric Sensor Based on Waste-Derived Carbon Nanodots for Enhanced Detection of Nitrobenzene

    Get PDF
    Carbon dots (CDs) samples were synthesized from orange peel waste (OPW) via a simple and eco-friendly hydrothermal carbonization (HTC) and electrochemical (EC) bottom-up synthesis integrated approach. The comprehensive chemical-physical characterization of CDs samples, carried out by various techniques such as TEM, EDX, XRD, FT-IR, underlined their morphological and microstructural features. The CDs exhibited attractive electrochemical properties, and thus an electrochemical sensor by modifying a screen printed carbon electrode (CDs/SPCE) for the detection of nitrobenzene (NB) in water was developed. Electroanalytical performances of CDs/SPCE sensor using differential pulse voltammetry (DPV) demonstrated its high sensitivity (9.36 μAμM^(-1)cm(^-2)) towards NB in a wide linear dynamic range (0.1–2000 μM) and a low limit of detection (LOD=13 nM). The electrochemical sensor also shown high selectivity, long-term stability, and repeatability. This paper might open the way to a new synergistic HTC-EC approach for the synthesis of CDs from waste biomass material and their advanced application in highly efficient electrochemical sensors

    Recent advances in nanotherapeutics for multiple myeloma

    Get PDF
    Anticancer therapies cannot be included in a one-size-fits-all scenario; it is imperative to adapt therapies to the tumor molecular profile and most importantly to develop target-specific therapeutics. Nanotherapeutics can combine molecular imaging with molecular therapy in order to provide the maximum benefit to patients in terms of disease prevention, identification, and treatment. Nanotechnology applied to therapy provides numerous advantages in diagnostics and in drug delivery, especially for those malignant cells that are diffcult to target or for drugs with poor bioavailability, such as those used for multiple myeloma (MM). This review summarizes the recent advances in the development of nanoparticle-based systems for the treatment of MM, taking into account the methods used for their functionalization, biocompatibility, and anticancer activity

    Eco-Friendly 1,3-Dipolar Cycloaddition Reactions on Graphene Quantum Dots in Natural Deep Eutectic Solvent

    Get PDF
    Due to their outstanding physicochemical properties, the next generation of the graphene family-graphene quantum dots (GQDs)-are at the cutting edge of nanotechnology development. GQDs generally possess many hydrophilic functionalities which allow their dispersibility in water but, on the other hand, could interfere with reactions that are mainly performed in organic solvents, as for cycloaddition reactions. We investigated the 1,3-dipolar cycloaddition (1,3-DCA) reactions of the C-ethoxycarbonyl N-methyl nitrone 1a and the newly synthesized C-diethoxyphosphorylpropilidene N-benzyl nitrone 1b with the surface of GQDs, affording the isoxazolidine cycloadducts isox-GQDs 2a and isox-GQDs 2b. Reactions were performed in mild and eco-friendly conditions, through the use of a natural deep eutectic solvent (NADES), free of chloride or any metal ions in its composition, and formed by the zwitterionic trimethylglycine as the -bond acceptor, and glycolic acid as the hydrogen-bond donor. The results reported in this study have for the first time proved the possibility of performing cycloaddition reactions directly to the p-cloud of the GQDs surface. The use of DES for the cycloaddition reactions on GQDs, other than to improve the solubility of reactants, has been shown to bring additional advantages because of the great affinity of these green solvents with aromatic systems

    Engineering of chitosan-hydroxyapatite-magnetite hierarchical scaffolds for guided bone growth

    Get PDF
    Bioabsorbable materials have received increasing attention as innovative systems for the development of osteoconductive biomaterials for bone tissue engineering. In this paper, chitosan-based composites were synthesized adding hydroxyapatite and/or magnetite in a chitosan matrix by in situ precipitation technique. Composites were characterized by optical and electron microscopy, thermogravimetric analyses (TGA), x-ray diffraction (XRD), and in vitro cell culture studies. Hydroxyapatite and magnetite were found to be homogeneously dispersed in the chitosan matrix and the composites showed superior biocompatibility and the ability to support cell attachment and proliferation; in particular, the chitosan/hydroxyapatite/magnetite composite (CS/HA/MGN) demonstrated superior bioactivity with respect to pure chitosan (CS) and to the chitosan/hydroxyapatite (CS/HA) scaffolds

    Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots

    No full text
    The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer

    Design of New Schiff Bases and Their Heavy Metal Ion Complexes for Environmental Applications: A Molecular Dynamics and Density Function Theory Study

    No full text
    Schiff bases (SBs) are important ligands in coordination chemistry due to their unique structural properties. Their ability to form complexes with metal ions has been exploited for the environmental detection of emerging water contaminants. In this work, we evaluated the complexation ability of three newly proposed SBs, 1–3, by complete conformational analysis, using a combination of Molecular Dynamics and Density Functional Theory studies, to understand their ability to coordinate toxic heavy metal (HMs) ions. From this study, it emerges that all the ligands present geometries that make them suitable to complex HMs through the N-imino moieties or, in the case of 3, with the support of the oxygen atoms of the ethylene diether chain. In particular, this ligand shows the most promising coordination behavior, particularly with Pb2+

    Photo-Fenton Degradation of Methyl Orange with Dunino Halloysite as a Source of Iron

    No full text
    The Fenton reaction is one of the most important processes for water and soil remediation, although this process has some drawbacks such as the use of H2O2 in large amounts, the formation of sludge due to the use of iron salts, and the need for acid pH values. Here we present the use of a natural clay, modified by acid treatment, as a heterogeneous catalyst to replace soluble iron salts and to avoid the use of water peroxide, resulting in a considerable increase in the attractiveness of the process. Halloysite (HT) clay from the Dunino mine consists of alumina and silica layers with the presence of iron species acting as a source of Fe ions. The etching of alumina layers using hydrochloric acid induces the release of iron species (mainly ions) in the solution, giving rise to the photodegradation activity of organic contaminants in water (i.e., Methyl Orange, MO) under UV irradiation without the need for hydrogen peroxide and avoiding the formation of sludges. MO adsorption properties and MO photodegradation ability were investigated for untreated and acid treated samples, respectively, to achieve the optimal process conditions. MO was not adsorbed on the clay’s surface due to electrostatic repulsion, but a complete degradation was observed after three hours under UV irradiation. The kinetics of photodegradation and the values of the half-life time are presented as a measure of the degradation rate. The proposed process shows a new route for effective remediation of water containing biologically active organic substances dissolved in it

    Electrochemical and Fluorescent Properties of Crown Ether Functionalized Graphene Quantum Dots for Potassium and Sodium Ions Detection

    No full text
    The concentration of sodium and potassium ions in biological fluids, such as blood, urine and sweat, is indicative of several basic body function conditions. Therefore, the development of simple methods able to detect these alkaline ions is of outmost importance. In this study, we explored the electrochemical and optical properties of graphene quantum dots (GQDs) combined with the selective chelating ability of the crown ethers 15-crown-5 and 18-crown-6, with the final aim to propose novel composites for the effective detection of these ions. The results obtained comparing the performances of the single GQDs and crown ethers with those of the GQDs-15-crown-5 and GQDs-18-crown-6 composites, have demonstrated the superior properties of these latter. Electrochemical investigation showed that the GQDs based composites can be exploited for the potentiometric detection of Na+ and K+ ions, but selectivity still remains a concern. The nanocomposites showed the characteristic fluorescence emissions of GQDs and crown ethers. The GQDs-18-crown-6 composite exhibited ratiometric fluorescence emission behavior with the variation of K+ concentration, demonstrating its promising properties for the development of a selective fluorescent method for potassium determination
    corecore