31 research outputs found

    Neem oil or almond oil nanoemulsions for vitamin E Delivery: from structural evaluation to in vivo assessment of antioxidant and anti-inflammatory activity

    Get PDF
    Purpose: Vitamin E (VitE) may be classified in "the first line of defense" against the formation of reactive oxygen species. Its inclusion in nanoemulsions (NEs) is a promising alternative to increase its bioavailability. The aim of this study was to compare O/W NEs including VitE based on Almond or Neem oil, showing themselves antioxidant properties. The potential synergy of the antioxidant activities of oils and vitamin E, co-formulated in NEs, was explored. Patients and methods: NEs have been prepared by sonication and deeply characterized evaluating size, ζ-potential, morphology (TEM and SAXS analyses), oil nanodroplet feature, and stability. Antioxidant activity has been evaluated in vitro, in non-tumorigenic HaCaT keratinocytes, and in vivo through fluorescence analysis of C. elegans transgenic strain. Moreover, on healthy human volunteers, skin tolerability and anti-inflammatory activity were evaluated by measuring the reduction of the skin erythema induced by the application of a skin chemical irritant (methyl-nicotinate). Results: Results confirm that Vitamin E can be formulated in highly stable NEs showing good antioxidant activity on keratinocyte and on C. elegans. Interestingly, only Neem oil NEs showed some anti-inflammatory activity on healthy volunteers. Conclusion: From the obtained results, Neem over Almond oil is a more appropriate candidate for further studies on this application

    U-CHANGE Project: a multidimensional consensus on how clinicians, patients and caregivers may approach together the new urothelial cancer scenario

    Get PDF
    IntroductionAdvanced urothelial carcinoma remains aggressive and very hard to cure, while new treatments will pose a challenge for clinicians and healthcare funding policymakers alike. The U-CHANGE Project aimed to redesign the current model of care for advanced urothelial carcinoma patients to identify limitations (“as is” scenario) and recommend future actions (“to be” scenario).MethodsTwenty-three subject-matter experts, divided into three groups, analyzed the two scenarios as part of a multidimensional consensus process, developing statements for specific domains of the disease, and a simplified Delphi methodology was used to establish consensus among the experts.ResultsRecommended actions included increasing awareness of the disease, increased training of healthcare professionals, improvement of screening strategies and care pathways, increased support for patients and caregivers and relevant recommendations from molecular tumor boards when comprehensive genomic profiling has to be provided for appropriate patient selection to ad hoc targeted therapies.DiscussionWhile the innovative new targeted agents have the potential to significantly alter the clinical approach to this highly aggressive disease, the U-CHANGE Project experience shows that the use of these new agents will require a radical shift in the entire model of care, implementing sustainable changes which anticipate the benefits of future treatments, capable of targeting the right patient with the right agent at different stages of the disease

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Aerosol jet printed 3D electrochemical sensors for protein detection

    Get PDF
    The use of electrochemical sensors for the analysis of biological samples is nowadays widespread and highly demanded from diagnostic and pharmaceutical research, but the reliability and repeatability still remain debated issues. In the expanding field of printed electronics, Aerosol Jet Printing (AJP) appears promising to bring an improvement in resolution, miniaturization, and flexibility. In this paper, the use of AJP is proposed to design and fabricate customized electrochemical sensors in term of geometry, materials and 3D liquid sample confinement, reducing variability in the functionalization process. After an analysis of geometrical, electrical and surface features, the optimal layout has been selected. An electrochemical test has been then performed quantifying Interleukin-8, selected as reference protein, by means of Anodic Stripping Voltammetry. AJP sensors have been compared with standard screen-printed electrodes in terms of current density and relative standard deviation. Results from AJP sensors with Ag-based Anodic Stripping Voltammetry confirmed nanostructures capability to reduce the limit of detection (from 2.1 to 0.3 ng/mL). Furthermore, AJP appeared to bring an improvement in term of relative standard deviation from 50 to 10%, if compared to screen-printed sensors. This is promising to improve reliability and repeatability of measurement techniques integrable in several biotechnological applications
    corecore