10 research outputs found

    Using effective medium theories to design tailored nanocomposite materials for optical systems

    Full text link
    Modern optical systems are subject to very restrictive performance, size and cost requirements. Especially in portable systems size often is the most important factor, which necessitates elaborate designs to achieve the desired specifications. However, current designs already operate very close to the physical limits and further progress is difficult to achieve by changing only the complexity of the design. Another way of improving the performance is to tailor the optical properties of materials specifically to the application at hand. A class of novel, customizable materials that enables the tailoring of the optical properties, and promises to overcome many of the intrinsic disadvantages of polymers, are nanocomposites. However, despite considerable past research efforts, these types of materials are largely underutilized in optical systems. To shed light into this issue we, in this paper, discuss how nanocomposites can be modeled using effective medium theories. In the second part, we then investigate the fundamental requirements that have to be fulfilled to make nanocomposites suitable for optical applications, and show that it is indeed possible to fabricate such a material using existing methods. Furthermore, we show how nanocomposites can be used to tailor the refractive index and dispersion properties towards specific applications.Comment: This is a draft manuscript of a paper published in Proc. SPIE (Proceedings Volume 10745, Current Developments in Lens Design and Optical Engineering XIX, Event: SPIE Optical Engineering + Applications, 2018

    Design rules for customizable optical materials based on nanocomposites

    Full text link
    Nanocomposites with tailored optical properties can provide a new degree of freedom for optical design. However, despite their potential these materials remain unused in bulk applications. Here we investigate the conditions under which they can be used for optical applications using Mie theory, effective medium theories, and numerical simulations based on the finite element method. We show that due to scattering different effective medium regimes have to be distinguished, and that bulk materials can only be realized in a specific parameter range. Our analysis also enables us to quantify the range of validity of different effective medium theories, and identify design rules on how the free material parameters should be adjusted for specific applications.Comment: 13 pages, 6 figure

    Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5

    Get PDF
    S.K. acknowledges support by the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg through the Juniorprofessuren-Programm and a fellowship by the Daimler und Benz Stiftung.The excitonic insulator is an intriguing electronic phase of condensed excitons. A prominent candidate is the small bandgap semiconductor Ta2NiSe5, in which excitons are believed to undergo a Bose-Einstein condensation-like transition. However, direct experimental evidence for the existence of a coherent condensate in this material is still missing. A direct fingerprint of such a state would be the observation of its collective modes, which are equivalent to the Higgs and Goldstone modes in superconductors. We report evidence for the existence of a coherent amplitude response in the excitonic insulator phase of Ta2NiSe5. Using nonlinear excitations with short laser pulses, we identify a phonon-coupled state of the condensate that can be understood as a novel amplitudemode. The condensate density contribution substantiates the picture of an electronically driven phase transition and characterizes the transient order parameter of the excitonic insulator as a function of temperature and excitation density.Publisher PDFPeer reviewe

    Using effective medium theories to design tailored nanocomposite materials for optical systems

    Get PDF
    Modern optical systems are subject to very restrictive performance, size and cost requirements. Especially in portable systems size often is the most important factor, which necessitates elaborate designs to achieve the desired specifications. However, current designs already operate very close to the physical limits and further progress is difficult to achieve by changing only the complexity of the design. Another way of improving the performance is to tailor the optical properties of materials specifically to the application at hand. A class of novel, customizable materials that enables the tailoring of the optical properties, and promises to overcome many of the intrinsic disadvantages of polymers, are nanocomposites. However, despite considerable past research efforts, these types of materials are largely underutilized in optical systems. To shed light into this issue we, in this paper, discuss how nanocomposites can be modeled using effective medium theories. In the second part, we then investigate the fundamental requirements that have to be fulfilled to make nanocomposites suitable for optical applications, and show that it is indeed possible to fabricate such a material using existing methods. Furthermore, we show how nanocomposites can be used to tailor the refractive index and dispersion properties towards specific applications

    Ultrafast dynamics and coherent order parameter oscillations under photo-excitation in the excitonic insulator Ta2NiSe5

    Get PDF
    The excitonic insulator (EI) is an intriguing phase of condensed excitons undergoing a Bose-Einstein-Condensation (BEC)-type transition. A prominent candidate has been identified in Ta2NiSe5. Ultrafast spectroscopy allows tracing the coherent response of the EI condensate directly in the time domain. Probing the collective electronic response we can identify fingerprints for the Higgs-amplitude equivalent mode of the condensate. In addition we find a peculiar coupling of the EI phase to a low frequency phonon mode. We will discuss the transient response on multiple energies scales ranging from the exciton dynamics to the coherent THz response of the gap.Publisher PD

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources

    Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices

    No full text
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semi-classical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperatures. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources
    corecore