2,439 research outputs found

    Exchange-controlled single-electron-spin rotations in quantum dots

    Full text link
    We show theoretically that arbitrary coherent rotations can be performed quickly (with a gating time ~1 ns) and with high fidelity on the spin of a single confined electron using control of exchange only, without the need for spin-orbit coupling or ac fields. We expect that implementations of this scheme would achieve gate error rates on the order of \eta ~ 10^{-3} in GaAs quantum dots, within reach of several known error-correction protocolsComment: 4+ pages, 3 figures; v2: Streamlined presentation, final version published in PRB (Rapid Comm.

    Relativistically invariant quantum information

    Get PDF
    We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.Comment: 5 pages, published versio

    Estimating entanglement of unknown states

    Get PDF
    The experimental determination of entanglement is a major goal in the quantum information field. In general the knowledge of the state is required in order to quantify its entanglement. Here we express a lower bound to the robustness of entanglement of a state based only on the measurement of the energy observable and on the calculation of a separability energy. This allows the estimation of entanglement dismissing the knowledge of the state in question.Comment: 3 pages, 1 figure. Comments welcome. V2: references updated. Accepted version by Applied Physics Letter

    SR90, strontium shaped-charge critical ionization velocity experiment

    Get PDF
    In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density

    Distribution of Interference in the Presence of Decoherence

    Full text link
    We study the statistics of quantum interference for completely positive maps. We calculate analytically the mean interference and its second moment for finite dimensional quantum systems interacting with a simple environment consisting of one or several spins (qudits). The joint propagation of the entire system is taken as unitary with an evolution operator drawn from the Circular Unitary Ensemble (CUE). We show that the mean interference decays with a power law as function of the dimension of the Hilbert space of the environment, with a power that depends on the temperature of the environment.Comment: 28 pages of pd

    A Quantitative Measure of Interference

    Full text link
    We introduce an interference measure which allows to quantify the amount of interference present in any physical process that maps an initial density matrix to a final density matrix. In particular, the interference measure enables one to monitor the amount of interference generated in each step of a quantum algorithm. We show that a Hadamard gate acting on a single qubit is a basic building block for interference generation and realizes one bit of interference, an ``i-bit''. We use the interference measure to quantify interference for various examples, including Grover's search algorithm and Shor's factorization algorithm. We distinguish between ``potentially available'' and ``actually used'' interference, and show that for both algorithms the potentially available interference is exponentially large. However, the amount of interference actually used in Grover's algorithm is only about 3 i-bits and asymptotically independent of the number of qubits, while Shor's algorithm indeed uses an exponential amount of interference.Comment: 13 pages of latex; research done at http://www.quantware.ups-tlse.fr

    Interference of Quantum Channels

    Full text link
    We show how interferometry can be used to characterise certain aspects of general quantum processes, in particular, the coherence of completely positive maps. We derive a measure of coherent fidelity, maximum interference visibility and the closest unitary operator to a given physical process under this measure.Comment: 4 pages, 5 figures, REVTeX 4, typographical corrections and added acknowledgemen

    A Mesoscopic Resonating Valence Bond system on a triple dot

    Full text link
    We introduce a mesoscopic pendulum from a triple dot. The pendulum is fastened through a singly-occupied dot (spin qubit). Two other strongly capacitively islands form a double-dot charge qubit with one electron in excess oscillating between the two low-energy charge states (1,0) and (0,1); this embodies the weight of the pendulum. The triple dot is placed between two superconducting leads as shown in Fig. 1. Under well-defined conditions, the main proximity effect stems from the injection of resonating singlet (valence) bonds on the triple dot. This gives rise to a Josephson current that is charge- and spin-dependent. Consequences in a SQUID-geometry are carefully investigated.Comment: final version to appear in PR

    High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling

    Full text link
    We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.Comment: 5 pages, 4 figure

    Eigenvalue Estimation of Differential Operators

    Full text link
    We demonstrate how linear differential operators could be emulated by a quantum processor, should one ever be built, using the Abrams-Lloyd algorithm. Given a linear differential operator of order 2S, acting on functions psi(x_1,x_2,...,x_D) with D arguments, the computational cost required to estimate a low order eigenvalue to accuracy Theta(1/N^2) is Theta((2(S+1)(1+1/nu)+D)log N) qubits and O(N^{2(S+1)(1+1/nu)} (D log N)^c) gate operations, where N is the number of points to which each argument is discretized, nu and c are implementation dependent constants of O(1). Optimal classical methods require Theta(N^D) bits and Omega(N^D) gate operations to perform the same eigenvalue estimation. The Abrams-Lloyd algorithm thereby leads to exponential reduction in memory and polynomial reduction in gate operations, provided the domain has sufficiently large dimension D > 2(S+1)(1+1/nu). In the case of Schrodinger's equation, ground state energy estimation of two or more particles can in principle be performed with fewer quantum mechanical gates than classical gates.Comment: significant content revisions: more algorithm details and brief analysis of convergenc
    • …
    corecore