17 research outputs found

    Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall

    Get PDF
    Research on new conservation treatment for archaeological wood requires large amounts of wooden material. For this purpose, artificial wood degradation (biological—using brown-rot fungus Coniophora puteana, and chemical—using NaOH solution) under laboratory conditions was conducted to obtain an abundance of similar samples that mimic naturally degraded wood and can serve for comparative studies. However, knowledge about its properties is necessary to use this material for further study. In this study, the chemical composition and microstructure of degraded cell walls were investigated using FT-IR, XRD, helium pycnometry and nitrogen absorption methods. The results show that biological degradation caused the loss of hemicelluloses and celluloses, including the reduction in cellulose crystallinity, and led to lignin modification, while chemical degradation mainly depleted the amount of hemicelluloses and lignin, but also affected crystalline cellulose. These changes affected the cell wall microstructure, increasing both surface area and total pore volume. However, the chemical degradation produced a greater number of mesopores of smaller size compared to fungal decomposition. Both degradation processes weakened the cell wall’s mechanical strength, resulting in high shrinkage of degraded wood during air-drying. The results of the study suggest that degraded wood obtained under laboratory conditions can be a useful material for studies on new consolidants for archaeological wood

    Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall

    Get PDF
    Research on new conservation treatment for archaeological wood requires large amounts of wooden material. For this purpose, artificial wood degradation (biological—using brown-rot fungus Coniophora puteana, and chemical—using NaOH solution) under laboratory conditions was conducted to obtain an abundance of similar samples that mimic naturally degraded wood and can serve for comparative studies. However, knowledge about its properties is necessary to use this material for further study. In this study, the chemical composition and microstructure of degraded cell walls were investigated using FT-IR, XRD, helium pycnometry and nitrogen absorption methods. The results show that biological degradation caused the loss of hemicelluloses and celluloses, including the reduction in cellulose crystallinity, and led to lignin modification, while chemical degradation mainly depleted the amount of hemicelluloses and lignin, but also affected crystalline cellulose. These changes affected the cell wall microstructure, increasing both surface area and total pore volume. However, the chemical degradation produced a greater number of mesopores of smaller size compared to fungal decomposition. Both degradation processes weakened the cell wall’s mechanical strength, resulting in high shrinkage of degraded wood during air-drying. The results of the study suggest that degraded wood obtained under laboratory conditions can be a useful material for studies on new consolidants for archaeological wood

    SYNTHESIS OF TRIPHENYLAMINE-BASED RHOMBIMINE MACROCYCLE BY [2+2] CYCLOCONDENSATION REACTION BETWEEN (1R,2R)-DIAMINOCYCLOHEXANE AND 4,4’-DIFORMYL TRIPHENYLAMINE

    No full text
    A Schiff base macrocycle with persistent rhomboidal shape was synthesized in excellent yield through [2+2] condensation reaction between (R,R)-1,2-diaminocyclohexane and 4,4’-diformyltriphenylamine. The dimeric macrocylic structure was proved by electrospray ionization mass spectrometry (ESI-MS), 1H-NMR, and FTIR spectroscopy. The complexation properties were evidenced by UV absorption

    From iron coordination compounds to metal oxide nanoparticles

    No full text
    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles

    Low-Temperature and UV Irradiation Effect on Transformation of Zirconia -MPS nBBs-Based Gels into Hybrid Transparent Dielectric Thin Films

    No full text
    Bottom-up approaches in solutions enable the low-temperature preparation of hybrid thin films suitable for printable transparent and flexible electronic devices. We report the obtainment of new transparent PMMA/ZrO2 nanostructured -building blocks (nBBs) hybrid thin films (61–75 nm) by a modified sol-gel method using zirconium ethoxide, Zr(OEt)4, and 3-methacryloxypropyl trimethoxysilane (MPS) as a coupling agent and methylmethacrylate monomer (MMA). The effect of low-temperature and UV irradiation on the nBBs gel films is discussed. The thermal behaviors of the hybrid sols and as-deposed gel films were investigated by modulated thermogravimetric (mTG) and differential scanning calorimetry (DSC) analysis. The chemical structure of the resulted films was elucidated by X-ray photoelectron (XPS), infrared (IR) and Raman spectroscopies. Their morphology and crystalline structure were observed by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and grazing incidence X-ray diffraction. The cured films show zirconia nanocrystallites of 2–4 nm in the hybrid matrix and different self-assembled structures for 160 °C or UV treatment; excellent dielectric behavior, with dielectric constant values within 6.7–17.9, depending on the Zr(OEt)4:MMA molar ratio, were obtained
    corecore