27 research outputs found

    The Effect of Virtual Civic Engagement on Crime: SeeClickFix in New Haven

    Get PDF
    Mobile virtual communities are an emerging space for improving social cohesiveness and promoting collective efficacy. The application SeeClickFix is a smartphone and web application developed in New Haven, Connecticut, where users report issues in their communities including non-violent crimes. These posts can be supported and commented on by other users and local government agencies acknowledge and address issues. The data are publicly available, providing a data-rich and transparent venue for monitoring the interaction of individuals with each other and city representatives. The purpose of our study is to look for correlations between SeeClickFix use and crime. We hypothesize that SeeClickFix activity reduces crime by increasing social cohesion and promoting collective efficacy. Preliminary analyses show that within each neighborhood, months with more SeeClickFix posts tend to have fewer crimes. In addition, the crime rate is lower after the creation of SeeClickFix relative to before. These data suggest that SeeClickFix use is correlated with reduced crime in New Haven. Further efforts are needed to establish if there is a causal relationship and if so by what mechanism. This work has the potential to suggest a method by which communities can increase transparency and reduce crime through an open data platform

    Approaches for integrating heterogeneous RNA-seq data reveal cross-talk between microbes and genes in asthmatic patients.

    Get PDF
    Sputum induction is a non-invasive method to evaluate the airway environment, particularly for asthma. RNA sequencing (RNA-seq) of sputum samples can be challenging to interpret due to the complex and heterogeneous mixtures of human cells and exogenous (microbial) material. In this study, we develop a pipeline that integrates dimensionality reduction and statistical modeling to grapple with the heterogeneity. LDA(Latent Dirichlet allocation)-link connects microbes to genes using reduced-dimensionality LDA topics. We validate our method with single-cell RNA-seq and microscopy and then apply it to the sputum of asthmatic patients to find known and novel relationships between microbes and genes

    Exploratory studies of oral and fecal microbiome in healthy human aging.

    Get PDF
    Growing evidence has linked an altered host fecal microbiome composition with health status, common chronic diseases, and institutionalization in vulnerable older adults. However, fewer studies have described microbiome changes in healthy older adults without major confounding diseases or conditions, and the impact of aging on the microbiome across different body sites remains unknown. Using 16S ribosomal RNA gene sequencing, we reconstructed the composition of oral and fecal microbiomes in young (23-32; mean = 25 years old) and older (69-94; mean = 77 years old) healthy community-dwelling research subjects. In both body sites, we identified changes in minor bacterial operational taxonomic units (OTUs) between young and older subjects. However, the composition of the predominant bacterial species of the healthy older group in both microbiomes was not significantly different from that of the young cohort, which suggests that dominant bacterial species are relatively stable with healthy aging. In addition, the relative abundance of potentially pathogenic genera, such a

    Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis.

    Get PDF
    The 16S rRNA gene has been a mainstay of sequence-based bacterial analysis for decades. However, high-throughput sequencing of the full gene has only recently become a realistic prospect. Here, we use in silico and sequence-based experiments to critically re-evaluate the potential of the 16S gene to provide taxonomic resolution at species and strain level. We demonstrate that targeting of 16S variable regions with short-read sequencing platforms cannot achieve the taxonomic resolution afforded by sequencing the entire (~1500 bp) gene. We further demonstrate that full-length sequencing platforms are sufficiently accurate to resolve subtle nucleotide substitutions (but not insertions/deletions) that exist between intragenomic copies of the 16S gene. In consequence, we argue that modern analysis approaches must necessarily account for intragenomic variation between 16S gene copies. In particular, we demonstrate that appropriate treatment of full-length 16S intragenomic copy variants has the potential to provide taxonomic resolution of bacterial communities at species and strain level

    Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides

    Get PDF
    The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system

    The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    No full text
    Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs), a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs), resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country

    Deciphering the Tumor–Immune–Microbe Interactions in HPV-Negative Head and Neck Cancer

    No full text
    Patients with human papillomavirus-negative head and neck squamous cell carcinoma (HPV-negative HNSCC) have worse outcomes than HPV-positive HNSCC. In our study, we used a published dataset and investigated the microbes enriched in molecularly classified tumor groups. We showed that microbial signatures could distinguish Hypoxia/Immune phenotypes similar to the gene expression signatures. Furthermore, we identified three highly-correlated microbes with immune processes that are crucial for immunotherapy response. The survival of patients in a molecularly heterogenous group shows significant differences based on the co-abundance of the three microbes. Overall, we present evidence that tumor-associated microbiota are critical components of the tumor ecosystem that may impact tumor microenvironment and immunotherapy response. The results of our study warrant future investigation to experimentally validate the conclusions, which have significant impacts on clinical decision-making, such as treatment selection

    Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 With

    No full text
    Recent studies using mouse models suggest that interaction between the gut microbiome and IL-17/IL-22-producing cells plays a role in the development of metabolic diseases. We investigated this relationship in humans using data from the prediabetes study of the Integrated Human Microbiome Project (iHMP). Specifically, we addressed the hypothesis that early in the onset of metabolic diseases there is a decline in serum levels of IL-17/IL-22, with concomitant changes in the gut microbiome. Clustering iHMP study participants on the basis of longitudinal IL-17/IL-22 profiles identified discrete groups. Individuals distinguished by low levels of IL-17/IL-22 were linked to established markers of metabolic disease, including insulin sensitivity. These individuals also displayed gut microbiome dysbiosis, characterized by decreased diversity, and IL-17/IL-22-related declines in the phylu
    corecore