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Growing evidence has linked an altered host fecal microbiome composition

with health status, common chronic diseases, and institutionalization in

vulnerable older adults. However, fewer studies have described microbiome

changes in healthy older adults without major confounding diseases or

conditions, and the impact of aging on the microbiome across different

body sites remains unknown. Using 16S ribosomal RNA gene sequencing,

we reconstructed the composition of oral and fecal microbiomes in young

(23–32; mean = 25 years old) and older (69–94; mean = 77 years old) healthy

community-dwelling research subjects. In both body sites, we identified

changes in minor bacterial operational taxonomic units (OTUs) between

young and older subjects. However, the composition of the predominant

bacterial species of the healthy older group in both microbiomes was not

significantly different from that of the young cohort, which suggests that

dominant bacterial species are relatively stable with healthy aging. In

addition, the relative abundance of potentially pathogenic genera, such as

Rothia and Mycoplasma, was enriched in the oral microbiome of the healthy

older group relative to the young cohort. We also identified several OTUs with a

prevalence above 40% and some were more common in young and others in

healthy older adults. Differences with aging varied for oral and fecal samples,

which suggests that members of the microbiome may be differentially affected

by aging in a tissue-specific fashion. This is the first study to investigate both oral

and fecal microbiomes in the context of human aging, and provides new

insights into interactions between aging and the microbiome within two

different clinically relevant sites.
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Introduction

Advanced age is accompanied by inevitable, yet highly

variable, declines in physiological function involving different

tissues and organs (Lopez-Otin et al., 2013). For most common

chronic diseases in adults, such as dementia, cancer and

cardiovascular disease, aging represents the single most

important risk factor (Percival, 2009). Older adults are also

often impacted by factors ranging from social and behavioral

to physiologic and biological including altered eating habits,

decreased physical exercise (Woodmansey, 2007), diminished

gut motility (O’Mahony et al., 2002), declined immune function

(Gomez et al., 2005; Shaw et al., 2010), and decreased gut stem

cell regenerative capacity (Oh et al., 2014). Collectively, these

changes may alter basic biological processes across many

different tissues, while influencing and also being influenced

by the host microbiome (Tiihonen et al., 2010), which is the

community of microorganisms that live on the human body.

A large number of microorganisms colonize the human body

and can have profound effects on human health (Group et al.,

2009; Human Microbiome Project, 2012; Gao et al., 2022).

Human saliva contains 108 to 109 microorganisms per

milliliter (Percival, 2009) and the gut harbors at least 3.9 ×

1013 microorganisms per adult human (Sender et al., 2016).

Both salivary bacterial flora (He et al., 2015) and fecal

bacterial flora (Henao-Mejia et al., 2012) are closely related to

the onset and progression of various diseases (Zhou et al., 2019;

Zhou et al., 2020). The disruption of microbiome composition

associated with poor health is referred to as dysbiosis (Tamboli

et al., 2004). For example, salivary microbiome dysbiosis has been

associated with periodontitis (Faveri et al., 2008), respiratory

system infections (de Steenhuijsen Piters et al., 2016), and

Alzheimer’s disease (Shoemark and Allen, 2015). In contrast,

fecal microbiome dysbiosis has been linked to inflammatory

bowel disease (Manichanh et al., 2012), frailty (van Tongeren

et al., 2005; Claesson et al., 2012) and a higher risk of

opportunistic infection (Sekirov et al., 2008).

From a different perspective, bacteria can be used as an

intervention for diseases such as opportunistic infection of the

gut. Fecal microbiota transplantation represents a novel

technique for reconstructing a healthy bacterial community in

patients with detrimental gut flora (Aroniadis and Brandt, 2013;

Young, 2016). For example, oral administration of a mixed

bacterial formula is clinically used in the management of

recurrent Clostridium difficile infection (Khanna et al., 2016).

A more recent study reported certain rejuvenating effects of

young microbiota on aged killifish (Smith et al., 2017) and mice

(Thevaranjan et al., 2017) following fecal microbiota

transplantation. Therefore, understanding the composition of

the microbiome in young and older individuals may help explain

the elevated frequency of various diseases in old age and provide

mechanistic insights that could lead to treatments.

The notion of a healthy gut bacterial community has been

largely based on studies in humans and most reports have

focused on young adults (Group et al., 2009). Few studies

have systematically evaluated the microbiome in the context

of disease-free aging; one recent study on the Chinese

population (Bian et al., 2017) showed that aging did not affect

stool microbiome composition. However, other studies suggest

that the microbiome in older adults is less stable than in younger

individuals (Claesson et al., 2011; Jeffery et al., 2016). Moreover,

several studies have reported that the relative abundance of

Clostridiales (Biagi et al., 2010; Claesson et al., 2011; Saraswati

and Sitaraman, 2014) and Alistipes (Claesson et al., 2012; Langille

et al., 2014) groups in the microbiome community is greater in

aged hosts. Furthermore, since factors other than age, such as

being institutionalized, place of residence, and diet, can affect the

microbiome (Human Microbiome Project, 2012), it is often

difficult to distinguish changes associated with aging versus

those resulting from varied confounding diseases and factors.

These confounding factors may contribute to the reported

inconsistencies in the literature. For example, Bacteroides, which

is a prominent member of the human gut microbiome, was

shown to be elevated in older adults in some studies (Hopkins

and Macfarlane, 2002; Claesson et al., 2011) and decreased in

others (Woodmansey et al., 2004). It was also recently observed

that OTUs in the genus Bacteroides change differently with aging

in the older microbiome-focused ELDERMET (http://eldermet.

ucc.ie) cohorts (Cusack et al., 2013; Jeffery et al., 2016). This

indicates that studying the bacterial microbiota composition at

the OTU level may be necessary to adequately understand

differences between age groups.

We compared the oral and fecal microbiomes of healthy

young and older adults. In this manner, we reduced the possible

confounding effects of illnesses and drugs on the microbiome. All

subjects were community-dwelling and fully independent and

frailty was excluded to minimize the confounding effects of

frailty, disability, or life in an institutionalized setting. We

collected both saliva and stool samples from each subject to

determine whether the bacterial microbiota from these tissues

follows the same pattern of change during aging.

Methods

Subject recruitment

All research was conducted following approval by the

University of Connecticut Health Center Institutional Review

Board (Number: 14-194J-3). Following informed consent, the
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oral and fecal microbiome samples were obtained from

10 healthy young (HY, 23–32; mean = 25 years old) and

13 healthy old (HO, 69–94; mean = 77 years old) volunteers

residing in the Greater Hartford, CT, United States of America

region using services of the UConn Center on Aging Recruitment

and Community Outreach Research Core (http://health.uconn.

edu/aging/research/research-cores/). Recruitment criteria were

established to select healthy adults experiencing “normal aging”

who are reflective of the typical health conditions of the

population within the corresponding age groups (Stephanie

Studenski and Resnick, 2009). Selecting this type of cohort

increases the generalizability of our studies and the likelihood

that these findings can be translated to the general population

(Stephanie Studenski and Resnick, 2009). Subjects were carefully

screened to exclude potentially confounding diseases and

medications. Individuals who reported chronic or recent

(i.e., within 2 weeks) infections were also excluded. Subjects

could have chronic diseases but were excluded if the following

were present: congestive heart failure, kidney disease (serum

creatinine >1.2 mg/dl in men and >1.1 mg/dl in women),

diabetes mellitus requiring medications, use of antibiotics,

immunosuppressive disorders or the use of

immunosuppressive agents including oral prednisone in

doses >10 mg day. Since declines in self-reported physical

performance are highly predictive of frailty and subsequent

disability and mortality (Hardy et al., 2011), all subjects were

questioned as to their ability to walk. For those who self-reported

an inability to walk (Hardy et al., 2011), the “Timed Up and Go”

(TUG) test was performed and measured as the time taken to

stand up from the sitting position, walk 10 feet and return to

sitting in a chair (Podsiadlo and Richardson, 1991). A TUG >10s
score was considered an indication of increased risk of frailty and

resulted in exclusion from the study (Rockwood et al., 2000).

Sample collection

Fecal samples were collected using the Fisherbrand™
Commode Specimen Collection System (Thermo Fisher

Scientific, Waltham, MA, United States). Saliva samples were

collected by asking each subject to let saliva collect in their mouth

for at least 1 min. The subject was then asked to drool into a

labeled 50 ml collection tube (Falcon, sterile conical

polypropylene tube with flat-top screw cap). This process was

repeated multiple times to collect larger volumes of saliva

(2–5 ml). Oral cavity microbiome samples were from the

dorsum of the tongue using Catch-All™ Sample Collection

Swabs and swabbing 1 cm2 of the center of the tongue for 5 s.

Immediately after swabbing, each swab was swirled in MO BIO’s

PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad,

CA, United States) collection tube with 750 ul prefilled collection

buffer (Tube C1). The swab sponge was pressed against the tube

wall multiple times for 20 s to ensure the transfer of bacteria from

the swab to the solution. The specimen in the collection tube was

kept cold until ready for processing.

DNA sequencing

Fresh samples were stored at -80 °C immediately after

collection for the microbiome analysis. Total DNA was

extracted from fecal samples using the Power Soil DNA

Extraction kit (Mo Bio Laboratories, Carlsbad, CA, United

States) according to manufacturer’s protocol. Bacterial 16S

rRNA gene DNA was amplified using the 27F/534R primer

set (27F 5′-AGAGTTTGATCCTGGCTCAG-3′, 534R 5′-ATT
ACCGCGGCTGCTGG-3′). PCR reactions were performed

using Phusion High-fidelity PCR Master mix (Invitrogen,

Carlsbad, CA, United States) at the following conditions:

95 °C for 2 min (1 cycle), 95 °C for 20 s/56 °C for 30s/72 °C

for 1 min (30 cycles). PCR products were barcoded and purified

using Agencourt AMPure XP beads (Beckman coulter, Brea, CA,

United States) according to manufacturer’s protocol. Libraries

were prepared with Illumina’s protocol for the MiSeq platform.

DNA sequencing was conducted on an Illumina MiSeq system.

Sequencing data analysis

Raw reads were filtered according to the sequence length and

quality. Filter-pass reads were assembled using Flash assembly

software, where the minimum overlap requirement is 30 bp and

the maximum mismatch ratio is 10% (Magoc and Salzberg,

2011). After assembly, chimeric sequences were removed

using the USEARCH software based on the UCHIME

algorithm (Edgar et al., 2011). After the barcode was removed

from each sequence, operational taxonomic units (OTUs) were

calculated using a de novo OTU picking protocol with a 95%

similarity threshold (specifically, a cluster at 98% similarity first,

and then cluster the output at 95% similarity as suggested by

USEARCH http://www.drive5.com/usearch/manual/uparse_

otu_radius.html). The taxonomy assignment of OTUs was

performed by comparing sequences to the Ribosomal

Database Project (RDP) (Wang et al., 2007) at https://rdp.

cme.msu.edu/with a cutoff of 0.8 (Claesson et al., 2009). A

total of 599,211 assembled reads were generated from

46 samples with a mean read depth of 13,026 and a standard

derivation of 6,099. The read depth ranged from 3,700 to 29,332.

Multivariate trees were plotted using Tree Of Life v1.0 (Letunic

and Bork, 2007; Letunic and Bork, 2011). To normalize the

sequence depth of each sample, 3,700 reads were randomly

picked from each sample for alpha diversity analysis, and the

statistical significance of differences were calculated using the

unpaired t-test with Welch’s correction. The R package

“Phyloseq” was used for alpha diversity and beta dissimilarity

analysis (McMurdie and Holmes, 2013). The two-sided Student’s
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t-test was used for significance testing for normally distributed

variables, otherwise the Mann-Whitney U test was used for

significance testing. Linear discriminant analysis based on

effect size (LEfSe) (Segata et al., 2011) was performed with the

web tool at http://galaxyproject.org/. The statistical tests were

completed with R packages “plyr” and “ggplot2” (Wickham,

2009). Power estimation was performed using the R package

“pwr.” Plots were created with GraphPad Prism version 6.00 for

Mac (GraphPad Software, La Jolla, California, United States of

America).

Results

Overview of the study dataset

Oral and fecal microbiomes were surveyed by collecting

saliva and stool samples, respectively, from each of the

23 subjects recruited for this study, which included 10 young

individuals (ages 23–32) and 13 older adults (ages 69–94)

(Table 1). Total DNA was extracted from the samples, and

the 16S rRNA gene was amplified and subjected to DNA

sequencing. A total number of 548 OTUs were generated as

described in the methods. OTUs with less than five reads were

excluded from the dataset. Saliva samples yielded 381 OTUs,

whereas stool samples yielded 405 OTUs. In addition, saliva

samples had 120 young-related OTUs and 35 aged-related OTUs,

whereas fecal samples contained 39 young-related OTUs and

150 aged-related OTUs (Table 2).

Bacteria flora richness in the young and
aged cohort

The diversity of bacterial flora is a crucial aspect of the

microbiome (Human Microbiome Project, 2012). The richness

(the total number of distinct bacterial taxonomy present) and

diversity (the variation in the number of different bacterial types)

were computed for each sample by treating each OTU as a

taxonomy.

To estimate species richness, we analyzed our data using the

Observed Species and Chao1 index (Hughes et al., 2001). The

number of species observed in saliva samples from the old cohort

were significantly lower than that from the young cohort.

Although less pronounced, a similar trend was observed when

calculating the Chao1 index. Stool from the old cohort showed a

higher mean value on Observed Species compared to the young

cohort, and the Chao1 index showed a similar trend. We think

this is because singletons and doubletons contribute more to the

total variance in stool than saliva (Figure 1A). Next, we applied

Shannon entropy and the inversed Simpson index to measure the

ecological diversity of the bacterial community. Like the

observations we made for species richness, the Shannon

entropy of saliva from the old cohort exhibited a lower value

compared to the young cohort, and there was a reversed pattern

for the stool sample (Figure 1B). The inversed Simpson index

provides a higher weight on more abundant taxonomies than the

Shannon entropy. This is another piece of evidence showing that

the bacterial population difference between young and aged

cohort resides in less abundant organisms within the bacterial

microbiota.

To further understand these differences in diversity and

perform a comprehensive comparison regarding the nature of

microbial ecology in these subjects, we plotted the Renyi diversity

(Li et al., 2012) of microbial populations for young and aged

cohorts per body sites. When the alpha-value of the Renyi

diversity grows, a higher mathematical weight was assigned to

taxa with higher relative abundance. The slope of the curve shows

the general evenness of the microbial community, i.e., a small

curve slope indicates high evenness of the community

(Figure 1C). Comparable to the aforementioned tendencies,

the importance of differences in diversity is less when the

alpha-value is increased, which indicates that the bacterial

community has more similarity when just the most numerous

species are evaluated. This again proves that the difference

TABLE 1 Subjects characteristics.

Groups Young (n = 10) Old (n = 13)

Age (year range)a 25+-3.20 (23–32) 77 ± 6.16 (69–94)

Male/female 2/8 7/6

Body mass indexa 24.98+-4.77 27.43 +- 3.16

aData are expressed as the mean ± SE.

TABLE 2 Summary of OTU selected by each method.

Saliva Stool Total number

Total OTU number 381 405 548

Total Read count 331,977 267,234 599,211

Young Old Young Old

Age-associated OTU 120 35 39 150

Age-associated reads 20,038 21,189 60,876 26,232

Binary OTU 103 27 24 131

Binary reads 3,105 219 1,657 11,866

LEfSe 29 2 13 24

LEfSe reads 16,331 16,627 60,262 10,584

Random Forest (RF) 23 7 12 18

RF reads 7,513 5,120 7,926 8,806

Operational taxonomic unit (OTU) was calculated using a de novo OTU picking

protocol with a 95% similarity threshold.
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between young and old cohorts is caused by non-dominate

organisms.

Characterization of the taxonomic
properties within the microbial
community

To comprehend the organization of bacterial communities in

terms of the main taxonomies, we constructed a hierarchical

clustering tree based on the 20 most abundant OTUs from all

46 samples (Supplementary Figure S1A). As expected, the saliva

and stool samples clearly formed two distinct main branches.

However, the saliva sample from subject #107 also contained

representative OTUs found in stool samples, whether this is the

true microbiome composition of this subject or reflects severe

reflux or sample contamination occurring during or following

sample collection is unknown. We did not notice an extra branch

for age factors among the top 20 OTUs. This suggests that the

dominant bacterial microbiome is largely stable throughout the

aging process in healthy humans.

Next, we examined the beta dissimilarity based on all

available OTUs under the unweighted UniFrac Distance

(Lozupone et al., 2007). This method employs a beta

dissimilarity calculation based on phylogenetic trees.

According to the Principal Coordinate Analysis (PCoA) plot,

the stool bacterial microbiome community structure from older

adults seemed different from younger individuals

(PERMANOVA: Pr>(F) value = 0.047). The salivary bacterial

microbiome community structure from the aged cohort is fairly

similar to that in the young cohort (PERMANOVA: Pr>(F)
value = 0.519) (Supplementary Figure S1B). In conjunction

with the results of the cluster-based analysis, we infer that the

bacterial type and abundance of the microbiome population as a

whole may not vary much with age. As a benefit of our unique

design, we can also compare the pairwise dissimilarity of the

saliva and stool microbiome between age groups. Consistent with

the PREMANOVA result, the overall dissimilarity of the stool

microbiome between groups is significantly higher than that of

the saliva microbiome (Supplementary Figure S1C). However,

the saliva sample shows a higher populational level dissimilarity

in the older population compared with the younger population,

and this trend is not obvious among stool samples

(Supplementary Figure S1D).

The abundance of bacteria taxonomy
changes with age

Although samples from the two age cohorts do not form

distinct branches, there is evidence from ecological diversity

estimates that some taxa may have a varied distribution of

abundance between cohorts. To calculate the taxa that vary

across the two cohorts, we performed a linear discriminant

FIGURE 1
Ecology richness and diversity of the microbiome. (A) Microbiome richness plot of a saliva and stool sample (*p < 0.05; **p < 0.01). (B)
Microbiome Shannon diversity and inverse Simpson index plot of a saliva and stool sample. (C) Renyi diversity of the microbiome in different age
groups. X-axis represents the alpha-value (increased alpha-value indicates a higher weight on dominant organisms when calculating diversity);
Y-axis is the diversity index calculated based on each alpha-value (*p < 0.05. t-test with Holm-Sidak correction).
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analysis based on effect size (LEfSe) (Segata et al., 2011). We

identified 29 OTUs that are statistically more abundant in the

young cohort and two OTUs in the older group within saliva

samples at a significance level of 0.05 for the factorial

Kruskal–Wallis test. Also, the order of Bacteroidales, the

class of Bacteroidia and the phylum of Bacteroidetes is more

abundant in the young cohort, and the family of Micrococcaceae

is more abundant in the older group (Figure 2A). For stool

samples, we were able to identify 13 OTUs that are more

abundant in the young cohort and 24 OTUs that are more

abundant in the older group. Besides single OTUs, there are

two clusters that are higher in aged populations. One cluster is

the order Coriobacteriales, and consequently, the family

Coriobacteriaceae, the phylum Actinobacteria and the class

Actinobacteria; another cluster is the Victivallaceae family,

order Victivallales, class Lentisphaeria and phylum

Lentisphaerae (Figure 2B).

Since LEfSe has the potential to miss OTUs with a lower

frequency, we applied two additional approaches to identify

taxonomies with a distinct distribution across groups.

Random Forest (Breiman, 2001) is one of the most accurate

machine learning methods for categorization of factor variables

and is one of the most popular classification techniques (Knights

et al., 2011; Statnikov et al., 2013). It generates an importance

score for each variable that represents how accurate this variable

is to distinguish groups. We trimmed OTUs that have global

variables less than 0.005 in each site to remove the background,

and consequently, 258 OTUs are left in the stool samples and

155 OTUs are left in the saliva sample. Then, we generated a list

of 30 OTUs with the highest importance value (Supplementary

Figure S2).

For samples with a low abundance that nonetheless show a

distinct distribution between groups, Random Forest may give a

low importance value since its controlled classification

FIGURE 2
Microbiome modulated by age. The bacteria taxonomies changed with age. Data are plotted with a linear discriminant analysis score with
log10 transformation. Green bars indicate this taxonomy is more abundant in young cohorts and red bars indicate this taxonomy ismore abundant in
aged cohorts. (A) Saliva sample. (B) Stool sample.
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calculation is based on the overall sample. To compensate for

this, we additionally identified the OTUs that were present in one

age cohort but lacking in another (independent of their

abundance) and we named them “Binary” OTUs. Among all

saliva samples, the young population has 103 binary OTUs and

the older population has 27. Among stool samples, the young

population has 24 binary OTUs and the older population has 131

(Table 2). A Venn Diagram shows the relationship of three

methods and is provided in Supplementary Figure S4.

By combining the three procedures described above, we were

able to identify 155 OTUs from 381 OTUs in saliva samples and

189 OTUs from 405 OTUs in stool samples (Table 2). We

consider these OTUs bacteria taxonomies altered with age.

These readings correspond to OTUs that occupy roughly 10%

of saliva samples and 30% of stool samples in terms of the relative

abundance and despite comprising around 50% of OTUs. Also,

age-related OTUs show an age-associated distribution

(Supplementary Figure S3) as the young cohort seems to have

a higher percentage of young cohort-related OTUs as does the

aged cohorts. We also investigated the possibility of microbiome

translocation as implicated in several previous reports. We found

that the six most abundant saliva taxa are relatively higher (W =

38, p = 0.10) in the stool microbiome of old individuals (median

relative abundance = 0.0832%) compared to young individuals

(median relative abundance = 0.0357%), which indicates a trend

of the saliva microbiome migrating to the gut (Supplementary

Figure S7). This translocation effect was not obvious in the saliva

microbiome, and the young and old cohort have a similar median

FIGURE 3
Representative OTUs for eachCoreMicrobiome. The relative abundance of each of theOTUs is plotted. (A) Young cohort representativeOTU in
a saliva sample, (B) aged cohort representative OTU in a saliva sample, (C) young cohort representative OTU in a stool sample, and (D) aged cohort
representative in a stool sample. Each dot represents one subject with the X-axis showing this subject’s age and the Y-axis showing the percentage of
reads of the OTU that belongs to each sample. The total reads across sample and subject are listed. The title shows phylum, class, order, family,
genus, and OTU number, while “Unclassified” indicates this OTU could only be classified at a higher taxonomy rank.
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relative abundance (young median relative abundance: 0.0499%,

old median relative abundance: 0.145%,W = 61, p = 0.83) of stool

major microbiome in their saliva samples.

To detect age-related OTUs with increased statistical

certainty and provide a reference to similar studies in the

future, we performed a power analysis of the presence/absence

study. We found that OTUs that were present in at least 40% of

each age-group were statistically more reliable (Supplementary

Figure S8). Thus, we applied this criterion to our “Binary” OTUs

when combining the three methods. Among the 155 age-related

OTUs in saliva, 120 were more abundant or only present in

young cohorts while 35 OTUs occurred in the older group

(Table 2). For young-related OTUs, 10 were picked up by all

three methods, which belong to the genus Prevotella, Soonwooa,

Treponema, Campylobacter, Dialister and Capnocytophaga

(Supplementary Figure S4). A total of 43.06% of the reads in

23 saliva samples from a young cohort belong to the genus

Prevotella, followed by Unclassified Prevotellaceae (12.89%) and

Capnocytophaga (7.53%) (Supplementary Figure S5A). For

advanced age-related OTUs in saliva samples (Supplementary

Figure S5B), Rothia occupies 81.15% of entire advanced age-

related population, followed by Capnocytophaga (10.21%) and

Prevotella (3.37%). We also noticed a group of bacteria that were

prevalent (at least 40%) in one cohort and showed an obvious

distribution associated with aging (Figure 3 and Supplementary

Figure S6). For example, OTU_197 (Supplementary Figure S6B)

Tannerella was more prevalent and abundant in aged saliva

samples than in young saliva samples. Given the fact that

Tannerella forsythia and Treponema denticola are among

three major pathogens involved in periodontitis (Scapoli et al.,

2012), this could be evidence that the oral cavity environment is

more prone to Tannerella growth when aging. Moreover,

OTU_190 (Supplementary Figure S6A) belongs to a species of

Prevotella. This OTU could only be found in young saliva cohorts

and was only present in 164 reads in the entire sequence. The

same pattern was found in stool samples for OTU_447

(Supplementary Figure S6C). The loss of these Prevotella

species may not affect the whole Prevotella population in

terms of overall Prevotella abundance, but it is very interesting

as to why a specific species could appear or disappear during the

aging process.

In stool samples, 39 OTUs are more abundant or only

present in young cohorts and 150 OTUs occur in old cohorts

(Figure 4 and Supplementary Figure S5). Among the young

cohort associated microbiome (Supplementary Figure S5C),

85.12% belong to Bacteroides. This is consistent with several

previous reports (Bartosch et al., 2004; Woodmansey et al., 2004;

van Tongeren et al., 2005). For the 10 most dominant genera of

the young cohort-related stool microbiome, half belong to the

order Clostridiales, which indicates that the order Clostridiales

may be sharply affected by age. Dialister has been previously

reported as less abundant in the over 70-year-old population in

Korea (Park et al., 2015), and the abundance of this genus is also

believed to correlate with aging (Biagi et al., 2010). Among the

53 genera that are more abundant in the aged cohort (Figure 3),

Lachnospiraceae Incertae Sedis and unclassified Lachnospiraceae

contribute to 26.26% of the entire population. 6.7% belong to

Bacteroides, 5.87% of this core population is Alistipes, and has

been reported to be more abundant in the aged mouse gut

(Langille et al., 2014) and associated with the more frail aging

population in Europe (Claesson et al., 2012). It is worth noting

that among 150 OTUs that are more abundant in the aged stool

population, 7.23% of them are unclassified Ruminococcaceae

(0.56% in young cohorts), 2.24% are unclassified Clostridiales

(0.35% in young cohorts), 3.5% are unclassified Bacteria and

2.86% are unclassified Prevotellaceae.

Discussion

Bacterial microbiota changes associated with aging were

described decades ago (Knights et al., 2011) but given the

presence of potentially confounding factors, such as varied

chronic diseases, frailty, medications, or institutionalization, it

FIGURE 4
Advanced age-related microbiome in the stool sample. The
advanced age-related stool microbiome population consists of
150 OTUs belonging to 53 genera with the 15 most prevalent taxa
given below and the remaining 38 genera merged and shown
as “Others.” The abundance percentage is determined by dividing
the number of reads for each OTU by the total number of reads for
this sample. The circle plot shows a combined percentage plot,
which is the total of the abundance percentage of each species
across all 23 individuals.
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has not been possible to discern microbiome changes attributable

to normal aging processes. Nevertheless, it is proposed that such

age-associated microbiome changes could contribute to chronic

inflammation, which represents one of the hallmarks of

biological aging (Scapoli et al., 2012). Our study is, to the best

of our knowledge, the first report of combined stool and saliva

microbiome analysis conducted in the context of healthy aging.

Despite a small sample size and low statistical power

(Supplementary Figure S9), we nonetheless observed that

several characteristics of saliva and the stool microbiome were

different between aged healthy individuals and young controls.

Moreover, the opportunistic pathogenic genus was found to be

enriched in both aged saliva and fecal samples, such as members

from the genera Rothia, Mycoplasma, Selenomonas, Tannerella,

and Alistipes.More importantly, by combining three comparison

methods, we found that the composition of predominant bacteria

in saliva were relatively similar, but slightly different in stool

between healthy aged and young people, which indicated that the

dominant bacteria communities were not significantly affected

by age. This is the first study investigating age-related changes in

the saliva and stool microbiomes among the same carefully

selected healthy cohorts. Our results indicate that the

dominant bacteria might play an important role in

maintaining human health status in the aging process.

Before the age of next generation sequencing, several changes

in aged people were revealed using culture methods (Hopkins

et al., 2001) and q-PCR based 16S rRNA gene screening (He et al.,

2003). Recently, the application of next generation sequencing of

16S rRNA genes has allowed the study of the bacterial

microbiome in a more comprehensive manner. Employing

this technique, several reports focusing on the European

populations have shown that the microbiome compositional

difference is affected by age, lifestyle, and geographical

location (Claesson et al., 2011; Claesson et al., 2012;

Yatsunenko et al., 2012). Some reports indicate that decreased

gut flora richness and diversity are associated with

hospitalization and antibiotic treatment (Bartosch et al., 2004),

which could be a signature of dysbiosis (Langille et al., 2014;

O’Toole and Jeffery, 2015). We present this study as a novel

investigation focusing on understanding the community of living

individuals who were all in relatively good health. In our study,

the gut microbiome of the aged cohort indicated a trend toward

higher ecological richness and diversity. This age-associated

bacteria enrichment has been previously reported in

Drosophila melanogaster (Ren et al., 2007). In antibiotic-free

older adults, increased counts of facultative anaerobes have been

reported (Woodmansey et al., 2004). We believe that this

increased gut microbiome diversity in aged cohorts could be

ascribed to certain newly emerged bacteria or from the decline of

some inhibiting factors such as age-associated intestinal immune

function decline (immunosenescence) (Franceschi et al., 2000;

Ostan et al., 2008). Certain bacteria groups, such as the

Clostridiales subpopulation, are considered detrimental in

aging-related bacteria composition change (O’Toole and

Jeffery, 2015), and we found nine species belonging to

Clostridiales that are more abundant in the gut microbiota of

aged cohorts with at least a 50% prevalence.

Besides the gut microbiota population, we noticed that the

aged oral microbiome shows decreased diversity among the same

population. We think that several factors may be contributing to

this observation. This could be a result of the different local

immune system against bacteria in the gut and oral environment

(Back et al., 2007; Percival, 2009) that may shape the microbiota

in different ways. Of note, saliva represents an oxygen-rich

environment, whereas the gut harbors more anaerobic

bacteria. Hence, the opposite trends of the saliva and stool

microbiome that we observed in the aged population may

result from increased oxidative stress. In saliva samples, we

observed a decrease of the anaerobic bacteria Prevotella and

Unclassified Prevotellaceae and an increase of aerobic bacteria

Rothia. Also, the oral cavity represents a very divergent

environment, and the decreased bacterial population and

decreased diversity may be associated with a loss of teeth and

Xerostomia, both of which are very common in the aged

population (Petersen and Yamamoto, 2005).

There are also other confounding variables, such as diet,

tobacco use, and alcohol use, that may contribute to changes in

the diversity of the gut and saliva microbiome. It was previously

found that smoking can lower gut (Opstelten et al., 2016; Gui

et al., 2021) and saliva (Jia et al., 2021) microbiome diversity and

contribute to the dysbiosis (Wu et al., 2016; Huang and Shi, 2019)

in these two body sites. Alcohol usage has also previously been

closely linked to decreased gut microbiome diversity (Bajaj, 2019;

Philips et al., 2022) and increased oral (Fan et al., 2018; Liao et al.,

2022) microbiome diversity. Additionally, alcohol usage is

associated with the growth of pathobionts and they can have

a long-term effect on the microbiome (Vetreno et al., 2021; Day

and Kumamoto, 2022). These cofounding factors should be

covered in follow-up studies to create a more comprehensive

understanding of their role in the microbiome and healthy aging.

In this study, we did not see dramatic changes of OTUs in

older adults’ saliva microbiome compared to young adults.

However, we did notice minor changes for some OTUs. For

instance, increasing one Mycoplasma OTU (OTU_128) could be

an indicator that the unbalanced oral community among older

adults may create higher tolerance for pathogenic bacteria

species, such as Mycoplasma pneumoniae, to establish

colonization, which is in line with widely reported

Mycoplasma pneumoniae infection among elderly adults

(Miyashita et al., 2008; Takahashi et al., 2009; Parrott et al.,

2016). Also, an increased abundance of the genus Rothia in older

adults has been positively associated with aging and increased

pneumonia recently (de Steenhuijsen Piters et al., 2016). In the

oral microbiome, this genus is also associated with periodontal

diseases (Kim and Reboli, 2015). Thus, the salivary microbiome

community changes when aging may also help explain increased
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pneumonia and periodontal disease frequency among the aged

population (Huttner et al., 2009; Kline and Bowdish, 2016). One

study focusing on the oral microbiome indicated that patients

with periodontitis (Sender et al., 2016) show low saliva

bacteria ecological diversity due to the overgrowth of

Selenomonas and Streptococcus. These imbalances in

bacterial ecology may contribute to the inflammatory status

of periodontitis. We noticed one species of Selenomonas

(OTU_394) present in eight of thirteen aged cohorts but

only two young cohorts along with the newly emerged

Tannerella species as mentioned above; these bacteria

found in aged cohorts and associated with periodontitis

strongly suggest a relationship between the saliva

microbiome and the emergence of periodontitis (Faveri

et al., 2008; Scapoli et al., 2012).

Additionally, the genus Bacteroides is dominant among

the young cohort-related to the microbiome of stool samples,

which is consistent with several previous reports (Bartosch

et al., 2004; Woodmansey et al., 2004; van Tongeren et al.,

2005). The proportion of the genus Bacteroides in the

advanced age-related microbiome is decreased, which is

possibly associated with an increase of other unclassified

bacteria. Inconsistent with our results, the Bacteroides-

Prevotella group was also found to be decreased in the aged

population as well as hospitalized patients (Saraswati and

Sitaraman, 2014). Of note, not all differences associated

with age are cross-phylum. In the replacement of

Bacteroides, three elderly individuals showed an increase of

Prevotella, which can also be proinflammatory (Scher et al.,

2013; Moreno, 2015) under certain conditions. Additionally,

the persistence of inflammatory stimuli over time represents

the biologic background favoring a susceptibility to age-

related diseases/disabilities (Franceschi et al., 2000).

Moreover, we identified three species of Alistipes showing

high prevalence and abundance in the aged population.

Interestingly, Alistipes has been associated with aging in

humans (Claesson et al., 2012) and mice (Langille et al.,

2014). In a human study, this Alistipes genus has been

associated with a long stay in medical facilities and

increased frailty (Claesson et al., 2012). The microbiome

has been reported as an indicator of health conditions

(Yoshizawa et al., 2013). Although the mechanism by

which these disease indicators come to exist in saliva or

stool has not been fully explained, these findings suggest

that the microbiome may represent a significant source of

discriminatory biomarkers of age-related diseases.

The majority of the age-related microbiome that we

identified as being different in healthy older adults represents

a minor group that occupies a small percentage of the whole

microbiome community. Several recent reports pointed out that

single species of bacteria, rather than genus or higher

taxonomies, could have a specific character that regulates the

immune system or modulates lifespan (Nakagawa et al., 2016;

Rossi et al., 2016). We’d like to re-emphasis that we found

predominant bacteria that were relatively stable in saliva and

in stool between healthy older and young people. These findings

indicate that the dominant bacteria phylogenies are relatively

stable across the healthy human aging process. In agreement with

our study, the stool microbiota of centenarians is dominated by

Bacteroidetes and Firmicutes, which account for 93% of total

bacteria (Biagi et al., 2010). Obvious changes can be found more

frequently in the composition of dominant bacteria between

healthy controls and people with diseases or pathological

status. For example, the proportions of the phylum Firmicutes

and class Clostridia were significantly reduced in the diabetic

group (Franceschi et al., 2000). Other human intestinal dysbiosis

has been demonstrated in subjects with diseases such as obesity

(Turnbaugh et al., 2006; Turnbaugh et al., 2009), metabolic

syndrome (Vrieze et al., 2012; Murphy et al., 2013), diabetes

(Larsen et al., 2010; Qin et al., 2012), and cardiovascular diseases

(Wang et al., 2011). Thus, the relatively stable and dominant

microbiota in our aged cohort implies that dominant bacteria

might play an important role in maintaining human health status.

It is worth considering that the stability of the “dominant bacteria”

might be a biomarker to assess the health status of aged cohorts.
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