6,348 research outputs found

    Coexistence of dilute and densely packed domains of ligand-receptor bonds in membrane adhesion

    Full text link
    We analyze the stability of micro-domains of ligand-receptor bonds that mediate the adhesion of biological model membranes. After evaluating the effects of membrane fluctuations on the binding affinity of a single bond, we characterize the organization of bonds within the domains by theoretical means. In a large range of parameters, we find the commonly suggested dense packing to be separated by a free energy barrier from a regime in which bonds are sparsely distributed. If bonds are mobile, a coexistence of the two regimes should emerge, which agrees with recent experimental observations.Comment: 6 pages, 6 figures, accepted by EP

    Hierarchical Bin Buffering: Online Local Moments for Dynamic External Memory Arrays

    Get PDF
    Local moments are used for local regression, to compute statistical measures such as sums, averages, and standard deviations, and to approximate probability distributions. We consider the case where the data source is a very large I/O array of size n and we want to compute the first N local moments, for some constant N. Without precomputation, this requires O(n) time. We develop a sequence of algorithms of increasing sophistication that use precomputation and additional buffer space to speed up queries. The simpler algorithms partition the I/O array into consecutive ranges called bins, and they are applicable not only to local-moment queries, but also to algebraic queries (MAX, AVERAGE, SUM, etc.). With N buffers of size sqrt{n}, time complexity drops to O(sqrt n). A more sophisticated approach uses hierarchical buffering and has a logarithmic time complexity (O(b log_b n)), when using N hierarchical buffers of size n/b. Using Overlapped Bin Buffering, we show that only a single buffer is needed, as with wavelet-based algorithms, but using much less storage. Applications exist in multidimensional and statistical databases over massive data sets, interactive image processing, and visualization

    Magnetic White Dwarfs from the SDSS II. The Second and Third Data Releases

    Full text link
    Fifty-two magnetic white dwarfs have been identified in spectroscopic observations from the Sloan Digital Sky Survey (SDSS) obtained between mid-2002 and the end of 2004, including Data Releases 2 and 3. Though not as numerous nor as diverse as the discoveries from the first Data Release, the collection exhibits polar field strengths ranging from 1.5MG to ~1000MG, and includes two new unusual atomic DQA examples, a molecular DQ, and five stars that show hydrogen in fields above 500MG. The highest-field example, SDSSJ2346+3853, may be the most strongly magnetic white dwarf yet discovered. Analysis of the photometric data indicates that the magnetic sample spans the same temperature range as for nonmagnetic white dwarfs from the SDSS, and support is found for previous claims that magnetic white dwarfs tend to have larger masses than their nonmagnetic counterparts. A glaring exception to this trend is the apparently low-gravity object SDSSJ0933+1022, which may have a history involving a close binary companion.Comment: 20 pages, 4 figures Accepted for publication in the Astronomical Journa

    The formation of gradients in wet deposited coatings with photocatalytically active nanoparticles

    Get PDF
    A total of 81 doped and undoped anatase nano-particles were synthesised by a precipitation/co-precipitation process followed by a hydrothermal treatment to obtain increased visible light photocatalytic activity. The screening process was performed utilising a high throughput analysis system based on the photometric monitoring of the photocatalytic degradation of organic dyes (Rhodamine B, Malachite Green, Acid Blue 29). Photocatalytically active coatings were prepared with selected catalysts with high and low rankings from the screening. Degradation experiments with stearic acid could confirm the varying grades of visible light activity as seen in the screening process

    Non-Trivial Vacua in Higher-Derivative Gravitation

    Get PDF
    A discussion of an extended class of higher-derivative classical theories of gravity is presented. A procedure is given for exhibiting the new propagating degrees of freedom, at the full non-linear level, by transforming the higher-derivative action to a canonical second-order form. For general fourth-order theories, described by actions which are general functions of the scalar curvature, the Ricci tensor and the full Riemann tensor, it is shown that the higher-derivative theories may have multiple stable vacua. The vacua are shown to be, in general, non-trivial, corresponding to deSitter or anti-deSitter solutions of the original theory. It is also shown that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. The analysis is extended to actions which are arbitrary functions of terms of the form 2kR\nabla^{2k}R, and it is shown that such theories also have a non-trivial vacuum structure.Comment: 25 pages, LaTeX2e with AMS-LaTeX 1.2, 7 eps figure

    Model-Driven Chatbot Development

    Full text link
    Esta versión del artículo ha sido aceptada para su publicación, después de la revisión por pares (cuando corresponda) y está sujeta a los términos de uso de AM de Springer Nature, pero no es la Versión de Registro y no refleja mejoras posteriores a la aceptación, ni ninguna corrección. La versión del registro está disponible en línea en: https://doi.org/10.1007/978-3-030-62522-1_15Chatbots are software services accessed via conversation in natural language. They are increasingly used to help in all kinds of procedures like booking flights, querying visa information or assigning tasks to developers. They can be embedded in webs and social networks, and be used from mobile devices without installing dedicated apps. While many frameworks and platforms have emerged for their development, identifying the most appropriate one for building a particular chatbot requires a high investment of time. Moreover, some of them are closed – resulting in customer lock-in – or require deep technical knowledge. To tackle these issues, we propose a model-driven engineering approach to chatbot development. It comprises a neutral meta-model and a domainspecific language (DSL) for chatbot description; code generators and parsers for several chatbot platforms; and a platform recommender. Our approach supports forward and reverse engineering, and model-based analysis. We demonstrate its feasibility presenting a prototype tool and an evaluation based on migrating third party Dialogflow bots to RasaWork funded by the Spanish Ministry of Science (RTI2018095255-B-I00) and the R&D programme of Madrid (P2018/TCS-4314
    corecore