3,181 research outputs found

    Higher Derivative Corrections to O-plane Actions: NS-NS Sector

    Get PDF
    We classify all possible two- and four-derivative couplings of bulk NS-NS sector fields to a single Op-plane which are compatible with diffeomorphism invariance and B-field gauge invariance. This is applicable to type IIA or IIB superstrings or to the bosonic string. We then consider this general action in various classes of backgrounds that admit a U(1) isometry and determine the constraints on the couplings from consistency with T-duality. We show that this consistency requires the two-derivative action to vanish, and the entire non-linear four-derivative action is fixed up to one overall constant which can be determined by comparison with a two-point scattering amplitude. The resulting action is consistent with all previously computed couplings.Comment: 54 page

    Public Health Versus Court-Sponsored Secrecy

    Get PDF
    Public health practice relies on access to information. Givelber and Robbins discuss the debate about court-sponsored secrecy: Whether or not courts should tolerate, edorse, or protect secrecy when the sequestered information might help protect the public health

    Kaluza-Klein Theories Without Truncation

    Get PDF
    In this note we present a closed expression for the space-time effective action for all bosonic fields (massless and massive) obtained from the compactification of gravity or supergravity theories (such as type II or eleven-dimensional supergravities) from DD to dd space-time dimensions.Comment: 20 page

    Scalar-Vector Bootstrap

    Get PDF
    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.Comment: 76 pages, v3 moved several details into appendices, expanded discussion of mixed symmetry projecto

    Abelian Tensor Hierarchy in 4D, N=1 Superspace

    Get PDF
    With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N=1 superspace and construct its Chern-Simons-like invariants. When specialized to the case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N=1 superfields.Comment: 31 page

    Cartography of high-dimensional flows: A visual guide to sections and slices

    Full text link
    Symmetry reduction by the method of slices quotients the continuous symmetries of chaotic flows by replacing the original state space by a set of charts, each covering a neighborhood of a dynamically important class of solutions, qualitatively captured by a `template'. Together these charts provide an atlas of the symmetry-reduced `slice' of state space, charting the regions of the manifold explored by the trajectories of interest. Within the slice, relative equilibria reduce to equilibria and relative periodic orbits reduce to periodic orbits. Visualizations of these solutions and their unstable manifolds reveal their interrelations and the role they play in organizing turbulence/chaos.Comment: 12 Pages, 12 figure

    Some tree-level string amplitudes in the NSR formalism

    Get PDF
    We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric F4F^4 effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.Comment: 40+8 pages; v2: references added; v3: additional field theory checks made; published version; v4: minor corrections; results unchange
    corecore