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1 Introduction

Kaluza-Klein theory was discovered long ago [1, 2] in an attempt to unify the only known

forces at that time, electromagnetism and gravity. By postulating a fifth dimension of

space-time, the electromagnetic field is considered as a component of gravity, rather than

a fundamental force. Since then, a multitude of new ideas have been added to the original

five-dimensional proposal, among them supersymmetry and the extension to all possible

space-time dimensions and compactification manifolds. Some beautiful and almost suc-

cessful attempts to describe our four-dimensional world have appeared in the literature [3].

No matter which scenario is being considered though, they all have one common fea-

ture: the appearance of additional massless scalars (not present in electromagnetism nor

gravity) and an infinite tower of massive Kaluza-Klein states. Initially, physicists tried

to deal with this by truncating the higher dimensional theory in order to find models re-

sembling our four-dimensional world, but often such truncations were not consistent (see

e.g. [4]). In the modern approach to Kaluza-Klein theory (pioneered in refs. [5–7]) extra di-

mensions and the corresponding massive harmonics are treated as physical and not merely

as mathematical structures. In the meantime a precise definition of a consistent truncation

has been found (see e.g. [8]). Some of these truncations involve a finite number of massive

states [9, 10], which become relevant e.g. in the context of non-relativistic conformal field

theories.

More recently, in the context of type IIA and M-theory compactifications to two,

three, and four dimensions on G2 and Spin(7) structure manifolds, the conditions for

having a supersymmetric vacuum were derived from the dynamics of massive Kaluza-Klein

modes [11]. In particular, certain interactions in space-time were inferred and used to

determine the F - and D-term conditions for unbroken supersymmetry. Classically these

conditions mean that the G2 or Spin(7) structure manifolds have a G2 or Spin(7) holonomy

metric. Explicitly, a superpotential was conjectured and the invariance of the space-time

action under gauge transformations of the M-theory three-form required the associated

moment map to vanish. In the G2 case these two conditions imply the existence of a

closed three-form and closed four-form. Moreover, classically the Kähler potential for

chiral multiplets is related to the volume of the internal space which implies that the

three-form is the Hodge dual of the four-form. Consequently the internal space has a G2

holonomy metric. Beyond the classical limit there still exists a closed three-form and a

closed four-form but they are no longer Hodge dual to each other.

In ref. [12] we started constructing explicitly the space-time theory obtained when

reducing (super-) gravity and certain matter fields (including p-form tensor fields) to any

number of space-time dimensions. The type of theories considered is quite general and

includes type II string theory and M-theory reduced to two, three, and four dimensions.

The actions obtained in ref. [11] for M-theory compactified to four dimensions involved

bosonic fields only, and the aim of our program is to describe the manifestly supersym-

metric completion. To achieve this, the fields and interactions described in ref. [11] will be

assembled into superfields of d = 4 and N = 1 supersymmetry.

The approach we are using is quite general and actually not new. An early publication

writing a higher dimensional theory in lower dimensional superspace is ref. [13] in which
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the formulation of ten-dimensional supersymmetric Yang-Mills theory in four-dimensional,

N = 1 superspace was presented.1 The inclusion of gravity has (to our knowledge) not

been worked out and remains a challenging problem. Even before coupling to gravity it

would be interesting to work out the three-dimensional version of the tensor hierarchy

presented in this paper in superspace. This would be a step in the direction of writing the

three-dimensional quantum field theory obtained by compactifying type IIA/IIB theories

to three dimensions in three-dimensional superspace.

The actions of the type considered in ref. [11] result from splitting the spacetime coor-

dinates into two parts and are, being a rewriting of the original theory, more general than

a compactification. Nevertheless, many compactification phenomena will have analogues

in such a splitting, an important one of which is the existence of a “gravitational tensor

hierarchy” [15]. This consists of a collection of p-form gauge fields coming from the di-

mensionally reduced component forms of the original supergravity theory organized into

a hierarchy and coupled to non-Abelian gauge fields resulting from the vector-like part

of the dimensionally reduced graviton. Any complete, manifestly 4D, N = 1 description

of eleven-dimensional supergravity will have a superspace analogue of such a non-abelian

tensor hierarchy.

Apart from their appearance in maximal supergravities, tensor hierarchies may be

considered in their own right as an extension of charged matter fields to forms of degree

higher than 1. In six dimensions, this idea has been used in attempts to construct con-

formal theories with N = (1, 0) supersymmetry [16–18]. In such models, the forms do not

(necessarily) arise from the reduction of differential forms in higher dimensions and it is,

therefore, useful to construct such tensor models in a formalism that does not commit to

a differential-geometric origin.

This paper represents a modest step the direction of constructing the actions with

local supersymmetry in superspace. We present a model consisting of anti-symmetric

tensor fields subjected to some symmetries to which we will refer as the “Abelian tensor

hierarchy”. We present the bosonic form and the corresponding superspace version (with

global four-dimensional, N = 1 supersymmetry). In a forthcoming publication this is

generalized to a non-Abelian tensor hierarchy by gauging [19]. The construction of the

locally supersymmetric generalization is in progress [20].

2 Bosonic tensor hierarchy

In this section we present the bosonic Abelian tensor hierarchy. It consists of a series of

p-form fields in d-dimensional space-time taking values in some vector spaces Vp. The di-

mension of Vp is the number of p-forms, which could be infinite. We take the space-time

metric to be flat and subject the p-form tensor fields to a set of Abelian gauge transfor-

mations. These gauge transformations are inspired by, but not identical to, those obtained

when compactifying the eleven-dimensional three-form to four space-time dimensions. We

show how the system obtained from dimensional reduction arises as a special case of the

more general Abelian tensor hierarchy.

1This result was rediscovered more recently in ref. [14].
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2.1 Potentials and gauge transformations

Consider a collection of real scalars, one-forms, two-forms, and so on up to p-forms in d

dimensions. In this section we keep d arbitrary, while in the rest of this paper we take

d = 4. We write

φA, φIa, φMab , φSabc, φXabcd, . . . (2.1)

where A runs over the set of scalars, I runs over the vectors, M over the two-forms, and

so on. In the remainder of this section we also use an alternative indexing for the fields in

some equations, writing I0, I1, · · · , Ip, · · · instead of A, I, · · · . This allows us to write more

general formulae. In equations without explicit space-time indices we use a subscript [p]

to make clear that the given object is a p-form, i.e. φ
Ip
[p]. The fields φ

Ip
a1...ap are functions

taking values in a real vector space Vp with Ip = 1, . . . , dim(Vp). In the concrete examples

discussed in this paper Vp will be the space of differential forms of some degree, Ωn−p(M),

on a manifold M . But for now we keep matters general and do not specialize to this case.

For each p > 0 there is a gauge transformation parameterized by a differential (p− 1)-

form Λ
Ip
[p−1], which generates Abelian p-form transformations. In addition, there is a shift

by the parameter Λ
Ip+1

[p] . For instance

δφA =
(
q(0)
)A
I

ΛI ,

δφIa = ∂aΛ
I +

(
q(1)
)I
M

ΛMa ,

δφMab = 2∂[aΛ
M
b] +

(
q(2)
)M
S

ΛSab,

(2.2)

or in general

δφ
Ip
a1···ap = p∂[a1Λ

Ip
a2···ap] +

(
q(p)
)Ip
Jp+1

Λ
Jp+1
a1···ap , (2.3)

where (q(p))
Ip
Jp+1

are linear maps

q(p) : Vp+1 → Vp. (2.4)

In differential form notation,

δφ
Ip
[p] = dΛ

Ip
[p−1] +

(
q(p) · Λ[p]

)Ip
. (2.5)

Here, d denote the exterior derivative and we introduced the notation(
q(p) · Λ[p]

)Ip
=
(
q(p)
)Ip
Jp+1

Λ
Jp+1

[p] . (2.6)

We define the field strengths

F
Ip
[p+1] = dφ

Ip
[p] −

(
q(p) · φ[p+1]

)Ip
, (2.7)

which satisfy

δF
Ip
[p+1] = −

(
q(p) · q(p+1) · Λ[p+1]

)Ip
. (2.8)
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In order for the field strengths to be gauge invariant, we thus require that(
q(p) · q(p+1)

)Ip
Kp+2

= 0, ∀p ≥ 0. (2.9)

It is then natural to interpret q as the boundary operator for a chain complex V•,

V• =

{
· · · q

(p+1)

−→ Vp+1
q(p)−→ Vp

q(p−1)

−→ Vp−1
q(p−2)

−→ · · · q
(0)

−→ V0

}
. (2.10)

Because of eq. (2.9),

imq(p+1) ⊆ kerq(p), (2.11)

but in general there is no equality. It is this mismatch which gives rise to interesting

physical quantities, as we explain in detail in section 2.3.

In addition to V•, we have the d-dimensional de Rham complex,

Ω•
(
Rd−1,1

)
=
{

Ω0 d−→ Ω1 d−→ · · · d−→ Ωp d−→ · · ·
}
. (2.12)

Then the gauge fields φ[p] take values in Ωp⊗Vp, the gauge parameters Λ[p−1] in Ωp−1⊗Vp,
and the field strengths F[p+1] in Ωp+1⊗Vp. The field strengths satisfy the Bianchi identities,

dF
Ip
[p+1] = −

(
q(p) · F[p+2]

)Ip
. (2.13)

There is one more phenomenon that we will need which is the extension of the com-

plex (2.10) one step further to the right, i.e. a new space V−1 and a linear operator

q(−1) : V0 −→ V−1 satisfying q(−1) · q(0) = 0

V• =

{
· · · q

(0)

−→ V0
q(−1)

−→ V−1

}
. (2.14)

In terms of matrices, if we let Z index V−1, then we require(
q(−1)

)Z
A

(
q(0)
)A
I

= 0. (2.15)

With this understood, we can naturally define a new “field strength”,

FZ[0] = −
(
q(0)
)Z
A
φA[0]. (2.16)

This is a gauge-invariant linear combination of the scalars φA[0] which is handed to us in the

case that the complex is extended as in (2.14). Note that since there are no (−1)-forms

on R4 , i.e. Ω−1(R4) = 0, there is no corresponding gauge field φZ[−1], and thus (2.16) is

completely consistent with (2.7). Also, FZ[0] satisfies a Bianchi just like (2.13)

dFZ[0] = −
(
q(0)
)Z
A
FA[1]. (2.17)
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2.2 Example from dimensional reduction

As an example of how this construction can arise naturally, consider a D-dimensional

theory that has an n-form potential field C[n]. A good example to keep in mind is eleven-

dimensional supergravity, with D = 11 and n = 3, or its close cousin with D = 5 and n = 1.

Let d be an integer d < D. We can formally split the D coordinates into d space-time

coordinates xa and D−d coordinates yi which are treated as internal labels. The resulting

theory is formulated in d space-time dimensions.

For simplicity, we take the space-time to be a product Rd−1,1 × M , where M is a

(D − d)-dimensional manifold. The n-form C[n] then decomposes into pieces

Ca1···api1···ik , p ≤ d, k ≤ D − d, p+ k = n. (2.18)

Explicitly, we have

Vp ∼= Ωn−p(M), (2.19)

the space of differential (n − p)-forms on M . The boundary case V−1 needed to accom-

modate F[0] is then Ωn+1(M). In general, Ωn−p(M) are infinite-dimensional vector spaces.

Consequently, an infinite number of d-dimensional fields can arise. Some fields are massless

and arise from harmonic forms on M . If M is compact, the number of such fields is finite.

However, there is also an infinite set of massive fields.

The decomposition of C[n] in eq. (2.18) reflects the Künneth decomposition

Ωn(Rd−1,1 ×M) ∼=
⊕
p

Ωp(Rd−1,1)⊗ Ωn−p(M). (2.20)

The operators q(p) are also easy to identify. They are the exterior derivative dM of M ,

acting on Ωn−p(M). The field strength F[p+1] is the projection of dC[n] onto the appropriate

summand in eq. (2.20).

It can be instructive to formulate these matters a bit more explicitly. Differential

p-forms in space-time, φ
Ip
[p] are labeled by a multi-index

Ip = (i1, . . . , in−p; y), (2.21)

which includes (n−p) indices on M , as well as the dependence on the “internal” coordinate

y. Thus, for this example

φ
Ip
[p] = Ca1···api1···in−p(x, y). (2.22)

(Note that although we wrote the φIs previously with an upper field index I, in this

context it is more natural to use lowered indices.) The contraction of these field indices

then includes an integral over the position y. This is called deWitt notation. For example,

given two fields

u(i;y)(x) = ui(x, y) and v(i;y)(x) = vi(x, y), (2.23)

then

u(i;y)(x)v(i;y)(x
′) =

∑
i

∫
M
dD−dy ui(x, y)vi(x

′, y), (2.24)

and analogously for fields carrying any number of indices along M .

– 6 –



J
H
E
P
0
3
(
2
0
1
6
)
0
5
2

We take q to be the set of operators(
q(p)
) (j1···jn−p−1;y′)

(i1···in−p;y)
= (−1)n−1 (n− p) δ[j1[i1

· · · δjn−p−1]
in−p−1

∂in−p]δ(y − y
′). (2.25)

It is not difficult to verify that q2 = 0. Indeed, q applies dM so, being a bit schematic,

q(p) · φ[p+1] = dMφ[p+1]. (2.26)

Here φ[p+1] is a differential (n − p − 1)-form in M and dM increases the internal degree

by one, leaving the space-time degree fixed. Then both sides of eq. (2.26) have space-time

degree p+ 1 and internal degree n− p.
The gauge transformations and field strengths in eqs. (2.5) and (2.7) become

δCa1···api1···in−p = p∂[a1Λa2···ap]i1···in−p
+ (−1)p (n− p) ∂[i1Λ|a1···ap|i2···in−p],

Fa1···ap+1i1···in−p = (p+ 1) ∂[a1Ca2···ap+1]i1···in−p
+ (−1)p+1 (n− p) ∂[i1C|a1···ap+1|i2···in−p−1].

(2.27)

These correspond to the decomposition of the eleven-dimensional equations δC = dΛ and

F = dC in accordance with eq. (2.20).

2.3 Massless spectrum and chain homology

Given a chain complex like (2.10) or (2.14), it is natural to consider the associated ho-

mology groups Hp(V•) = ker(q(p−1))/ im(q(p)). What is the physical significance of this

construction? Any field that lies in the image of q is pure gauge and can be fixed to zero,

while another field that is not in the kernel of q gets a mass via the Stückelberg mechanism.

It is sometimes said that the latter field has “eaten” the former and become massive. The

homology of the chain complex measures what is left, i.e. the fields that are in the kernel

of q but not in the image of q, and these are precisely the fields that remain massless. Let’s

see how this works in more detail.

To start with, we will build a basis for each Vp. We could denote an initial basis as

{eIp}, so that we have expansions like

φ[p] =
∑
Ip

φ
Ip
[p]eIp . (2.28)

Now we would like to decompose our space further using the boundary maps q(p), and

change basis appropriately. We start at the top of the complex, with p = d. For Vd we

first construct a basis {aαd
} for the subspace ker(q(d−1)) ⊆ Vd. Then we complete this with

vectors {bµd} to get a basis for all of Vd. Of course, this new basis could be expanded in

terms of the old one {eId},

aαd
=
∑
Id

aIdαd
eId , bµd =

∑
Id

bIdµdeId . (2.29)

Next, for each p < d we build a basis with three disjoint collections of vectors. First we

take the collection {cµp+1 = (q(p) · bµp+1)}, where very explicitly,

c
Ip
µp+1 =

(
q(p)
)Ip
Jp+1

b
Jp+1
µp+1 , cµp+1 =

∑
Ip

c
Ip
µp+1eIp . (2.30)
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These are a basis for im(q(p)). Next, since im(q(p)) is a subspace of ker(q(p−1)), we can

complete this with vectors {aαp} to get a basis for all of ker(q(p−1)). Finally, we complete

this to a basis for all of Vp with a collection of vectors {bµp}. Now any vector in Vp can be

expanded, for instance

φ[p] =
∑
µp+1

φ
µp+1

[p] cµp+1 +
∑
αp

φ
αp

[p]aαp +
∑
µp

φ
µp
[p]bµp . (2.31)

Denote the subspaces of Vp spanned by the {cµp+1}, {aαp}, and {bµp} by Cp, Ap, and Bp,

respectively. Then we have

Vp ∼= im(q(p)) ⊕ ker(q(p−1))/ im(q(p)) ⊕ Vp/ ker(q(p−1))

∼= Cp ⊕ Ap ⊕ Bp.
(2.32)

In particular, we have im(q(p)) ∼= Cp, ker(q(p−1)) ∼= Cp ⊕Ap, and

q(p)
∣∣∣
Bp+1

: Bp+1
∼−→ Cp (2.33)

is an isomorphism, and the homology is given by

Hp(V•) ∼= Ap. (2.34)

We now plug these into some of our formulae. The variations become

Cp : δφ
µp+1

[p] = dΛ
µp+1

[p−1] + Λ
µp+1

[p] ,

Ap : δφ
αp

[p] = dΛ
αp

[p−1],

Bp : δφ
µp
[p] = dΛ

µp
[p−1].

(2.35)

We can use the shift symmetry in the first line to set φ
µp+1

[p] = 0, thus fixing the gauge

symmetry parameterized by Λ
µp+1

[p] . There is still, in principle, a symmetry corresponding

to Λ
µp+1

[p−1], but it must be compensated by Λ
µp+1

[p] = −dΛ
µp+1

[p−1] in order to preserve our gauge

choice and nothing transforms under this combination. After implementing this gauge

fixing for each p, we are left with the second and third groups of potentials, taking values

in Ap and Bp, respectively. The φ
αp

[p] still enjoy their gauge transformations, parameterized

by Λ
αp

[p−1], but they are standard Abelian transformations with no extra shift. The φ
µp
[p] no

longer transform, since we fixed their gauge transformations.

After gauge fixing, the field strengths thus break into

F
µp+1

[p+1] = −φµp+1

[p+1], (2.36)

F
αp

[p+1] = dφ
αp

[p] , (2.37)

F
µp
[p+1] = dφ

µp
[p] . (2.38)

Recall that for p = −1 there is no potential, and in this case the only non-vanishing

components of the field strength are of the first type (taking values in C−1 ∼= B0),

Fµ0[0] = −φµ0[0]. (2.39)
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We see immediately that the potentials valued in Ap ∼= Hp(V•) appear only differenti-

ated (dφ
αp

[p] ) and hence these fields must remain massless. On the other hand the remaining

fields φ
µp
[p] that take values in Bp do appear undifferentiated inside of F

µp
[p] . To make it

explicit that these fields are truly massive, and to compute the details of their spectrum,

requires some further assumption about the precise form of the kinetic terms. However,

there is nothing protecting them from being massive, and indeed if the kinetic terms have

a reasonably standard form

Lkin =
3∑

p=−1
G

(p)
IpJp

F
Ip
[p+1] ∧ ∗F

Jp
[p+1], (2.40)

(where ∗ is the space-time Hodge duality operator, so ∗F Jp[p+1] is a (3−p)-form in space-time

and G(p) is some non-degenerate metric on Vp), then mass terms arise explicitly from the

pieces where we restrict G(p) to Cp ⊗ Cp.
In the dimensional reduction case, this story translates to something more familiar.

In particular, as mentioned before, the chain complex V• is just the co-chain complex

Ωn−•(M), with q being identified with the de Rham exterior derivative dM on M . The

homology groups of V• are just the real de Rham cohomology groups of M :

Hp(V•) ∼= Hn−p(M,R). (2.41)

When translated into this context, the discussion above amounts to the statements

1. We can gauge away the fields corresponding to exact forms on the internal space.

2. The massless fields correspond to the above cohomology groups (with harmonic forms

typically used as representatives for the cohomology classes).

3. The fields corresponding to non-closed internal forms generally get masses. In a spec-

tral decomposition, the masses (squared) would be given in terms of the eigenvalues

of the Laplacian operator acting on Ω•(M).

We now turn to the superfield embedding of this hierarchy of bosonic p-forms.

3 Superfields

In this section we will specialize to d = 4 and embed the hierarchy of bosonic p-forms into

superfields. For clarity, we give more conventional names to our potentials: instead of φA[0],

we will have an axion aA. φI[1] a, φ
M
[2] ab, φ

S
[3] abc and φX[4] abcd will become AIa, B

M
ab , CSabc and

DX
abcd respectively. The gauge parameters are denoted by Λ[p−1], and the field strengths

are denoted by F[p+1], including the case p = −1. Our superspace conventions are those of

ref. [21], which mostly agree with those of ref. [22]; some useful conventions are summarized

in appendix A.
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0-forms 1-forms 2-forms 3-forms 4-forms

aA FAa ∂[aF
A
b] = 0

AIa F Iab ∂[aF
I
bc] = 0

BM
ab FMabc ∂[aF

M
bcd] = 0

CSabc FSabcd

DX
abcd

Table 1. Bosonic fields of the four dimensional Abelian tensor hierarchy. The potentials are on

the main diagonal, field strengths in the next and the Bianchi identities in the upper diagonal.

Space-time j-forms are in the j-th column. When embedded into superfields entries in the same

column appear in the same type of superfield. Table 2 displays the superspace version of this table.

0-forms 1-forms 2-forms 3-forms 4-forms

ΦA FA D̄2DαF
A = 0

V I W I
α DαW I

α − D̄α̇W
α̇ = 0

ΣM
α HM D̄2HM = 0

XS GS

ΓX

Table 2. Superspace version of table 1. The prepotentials are on the main diagonal, field strength

superfields in the next and the Bianchi identities in the upper diagonal. Superfields in the same

columns are of the same type. Starting on the left these are chiral, real, chiral spinor, real and

chiral superfields.

3.1 Without shifts

We begin by reviewing how one embeds the usual potential fields in N = 1 superspace

using prepotential superfields [23] (see also [24]). Following the superspace literature, we

call these superfields “prepotentials” because there is another notion of superfields that

deserve to be called potentials, namely we simply promote the bosonic p-forms to super p-

forms, φa1···ap −→ ΦA1···Ap , where Ai are superspace indices (e.g. running over (xa, θα, θ̄α̇)).

After imposing certain constraints to ensure that the Φ[p] give irreducible representations of

supersymmetry, the potentials Φ[p] can be solved in terms of the prepotentials we describe

below [23, 24].

3.1.1 The zero-forms

The zero form aA will be the real part of the bottom component of a chiral superfield ΦA,

D̄α̇ΦA = 0:

aA =
1

2

(
ΦA + Φ

A
) ∣∣∣. (3.1)
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In this section and below, the | means that we should extract only the bottom component,

i.e. set θ = θ̄ = 0. Gauge zero-forms differ from scalar fields in that they shift by a

real constant under transformations δΦA = cA (with cA ∈ R) leaving the classical action

invariant. The field strength invariant under this shift is2

FA =
1

2i

(
ΦA − Φ

A
)
. (3.2)

This field strength satisfies a Bianchi identity (the coefficients chosen will make more sense

once we turn on the shifts)

− 1

4
D̄2DαF

A = 0. (3.3)

To extract the component field strength, we take the θθ̄ component

FAa = −1

4
(σa)αα̇

[
Dα, D̄α̇

]
FA
∣∣∣, (3.4)

giving the bosonic field strength FAa = ∂aa
A.

Of course there are other component fields in the same multiplet, all of which are, like

aA, valued in V0. There is a real scalar partner to aA, which we will call ϕA, given by

1

2i

(
ΦA − Φ

A
) ∣∣∣. (3.5)

Note that ϕA is invariant under the shift above and therefore really a scalar instead of a

zero-form. There is also a complex auxiliary field

− 1

4
D2ΦA

∣∣∣. (3.6)

And finally there are the fermionic superpartners

ψAα =
1√
2
DαΦA

∣∣∣ and ψ
A
α̇ =

1√
2
D̄α̇Φ

A
∣∣∣. (3.7)

3.1.2 The one-forms

The vector AIa naturally lives inside a real scalar superfield V I , which suffers the gauge

transformation,

δV I =
1

2i

(
ΛI − Λ

I
)
, (3.8)

where ΛI is chiral, D̄α̇ΛI = 0. The gauge field itself is extracted by

AIa = −1

4
(σa)αα̇

[
Dα, D̄α̇

]
V I

∣∣∣∣ , (3.9)

and one can verify that

δAIa = ∂aλ
I , (3.10)

2We apologize for the over-use of the letters a and F , but it should hopefully be clear from context and

indices whether we are talking about a bosonic field, a superfield, or an index.
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where

λI =
1

2

(
ΛI + Λ

I
)∣∣∣∣ . (3.11)

Note that we can use the other components of ΛI to go to Wess-Zumino gauge, in which

we have (see e.g. [21, 22, 24])

V I
∣∣∣ = DαV

I
∣∣∣ = D̄α̇V

I
∣∣∣ = D2V I

∣∣∣ = D̄2V I
∣∣∣ = 0. (3.12)

The remaining component fields in V I consist of a real auxiliary field

DI =
1

16

{
D2, D̄2

}
V I
∣∣∣, (3.13)

and fermions

λIα = − i
4
D̄2DαV

I
∣∣∣, λ

I
α̇ =

i

4
D2D̄α̇V

I
∣∣∣. (3.14)

The components DI , λI , and λ
I

are all gauge-invariant. We can make this manifest

by constructing an invariant field strength which is a chiral spinor superfield

W I
α = −1

4
D̄2DαV

I , (3.15)

that contains (in addition to DI and λI) the appropriate component field strength

F Iab = − i
2

(
(σab)

β
α DαW I

β − (σ̄ab)
α̇
β̇
D̄α̇W

I β̇
)∣∣∣∣ . (3.16)

Furthermore, W I obeys the Bianchi identity

1

2i

(
DαW I

α − D̄α̇W
I α̇
)

= 0. (3.17)

3.1.3 The two-forms

The two-form potentials BM
ab reside in a chiral spinor superfield ΣM

α in the same way that

F Iab lives inside of W I
α, i.e.

BM
ab = − i

2

(
(σab)

β
α DαΣM

β − (σ̄ab)
α̇
β̇
D̄α̇ΣM β̇

)∣∣∣∣ . (3.18)

The superfield ΣM
α has a gauge transformation

δΣM
α = −1

4
D̄2DαU

M , (3.19)

where UM is a real scalar superfield. We of course have

ΛMa = −1

4
(σa)αα̇

[
Dα, D̄α̇

]
UM

∣∣∣∣ , (3.20)

and

δBM
ab = 2∂[aΛ

M
b] . (3.21)
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The remaining components of UM either drop out entirely (if they are part of a chiral

superfield plus its conjugate), or they can be used to set some components of ΣM
α to zero,

in an analog of Wess-Zumino gauge. Explicitly, we can set

ΣM
α

∣∣∣ = Σ
M
α̇

∣∣∣ = 0, (3.22)

and we can set the real part of DαΣM
α (which also equals the real part of D̄α̇ΣM α̇) to zero.

The remaining gauge-invariant components are a real scalar

`M =
1

4i

(
DαΣM

α − D̄α̇ΣM α̇
) ∣∣∣, (3.23)

and fermions

χMα = − 1

4
√

2
D2ΣM

α

∣∣∣, χα̇ = − 1

4
√

2
D̄2Σ

M
α̇

∣∣∣. (3.24)

The corresponding invariant field strength is

HM =
1

2i

(
DαΣM

α − D̄α̇ΣM α̇
)
, (3.25)

with

FMabc =
1

8
εabcdσ

d
αα̇

[
Dα, D̄α̇

]
HM

∣∣∣∣ . (3.26)

This invariant superfield strength obeys the Bianchi identity

− 1

4
D̄2HM = 0. (3.27)

3.1.4 The three-forms

The three-form CSabc is embedded in a real scalar superfield XS ,

CSabc =
1

8
εabcdσ

d
αα̇

[
Dα, D̄α̇

]
XS

∣∣∣∣ . (3.28)

The gauge transformation is parameterized by a chiral spinor superfield ΥS
α, with

ΛSab = − i
2

(
(σab)

β
α DαΥS

β − (σ̄ab)
α̇
β̇
D̄α̇ΥS β̇

)∣∣∣∣ , (3.29)

and the superfield transformation is

δXS =
1

2i

(
DαΥα − D̄α̇Υα̇

)
. (3.30)

Going to (an analog of) Wess-Zumino gauge, we can ensure that

XS
∣∣∣ = DαX

S
∣∣∣ = D̄α̇X

S
∣∣∣ = 0, (3.31)

leaving us with a complex scalar

yS = −1

4
D̄2XS

∣∣∣, (3.32)
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a real auxiliary scalar,

zS =
1

32

{
D2, D̄2

}
XS
∣∣∣, (3.33)

and fermions

ηSα = − 1

4
√

2
D̄2DαX

S
∣∣∣, ηSα̇ = − 1

4
√

2
D2D̄α̇X

S
∣∣∣. (3.34)

The field strength is a chiral superfield,

GS = −1

4
D̄2XS , FSabcd =

i

8
εabcd

(
D2GS − D̄2GS

)∣∣∣∣ . (3.35)

There’s no corresponding Bianchi identity since the bosonic field strength FSabcd is auto-

matically closed by virtue of being a 4-form.

3.1.5 The four-forms

Finally, the four-form potential DX
abcd can be placed in a chiral superfield ΓX ,

DX
abcd =

i

8
εabcd

(
D2ΓX − D̄2ΓX

)∣∣∣∣ . (3.36)

The gauge parameter lives in a real scalar superfield ΞX ,

ΛXabc =
1

8
εabcdσ

d
αα̇

[
Dα, D̄α̇

]
ΞX
∣∣∣∣ , (3.37)

and the superfield transforms as

δΓX = −1

4
D̄2ΞX . (3.38)

There is no field strength in this case, and the space of gauge transformations is large

enough to gauge away every component of ΓX except for DX
abcd (and even this can be

gauged away locally, using the residual bosonic symmetry parameterized by ΛX
abc).

3.2 With shifts

With the details above, it is not hard to incorporate the shifts. For instance, the zero-form

now transforms, so we should have (we drop the (p) superscripts on q since the degree is

clear from the indices),

δΦA = (q · Λ)A , (3.39)

and correspondingly we must deform the field strength (3.2) to,

FA =
1

2i

(
ΦA − Φ

A
)
− (q · V )A . (3.40)

This modifies the Bianchi identity to

− 1

4
D̄2DαF

A = − (q ·Wα)A . (3.41)
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Proceeding similarly for the other fields, we arrive at the variations3

δΦA = + (q · Λ)A

δV I =
1

2i

(
ΛI − Λ

I
)

+ (q · U)I

δΣM
α = −1

4
D̄2DαU

M + (q ·Υα)M

δXS =
1

2i

(
DαΥS

α − D̄α̇ΥS α̇
)

+ (q · Ξ)S ,

δΓX = −1

4
D̄2ΞX .

(3.42)

These prompt us to construct invariant field strength superfields

EZ = − (q · Φ)Z

FA =
1

2i

(
ΦA − Φ̄A

)
− (q · V )A

W I
α = −1

4
D̄2DαV

I − (q · Σα)I

HM =
1

2i

(
DαΣM

α − D̄α̇Σ̄Mα̇
)
− (q ·X)M

GS = −1

4
D̄2XS − (q · Γ)S .

(3.43)

Notice that we have also introduced the “zero-form field strength” EZ , which is a chiral

superfield, with component

FZ =
1

2

(
EZ + E

Z
)∣∣∣∣ . (3.44)

Finally, these field strengths obey Bianchi identities

0 =
1

2i

(
EZ − ĒZ

)
+ (q · F )Z

0 = −1

4
D̄2DαF

A + (q ·Wα)A

0 =
1

2i

(
DαW I

α − D̄α̇W
I α̇
)

+ (q ·H)I

0 = −1

4
D̄2HM + (q ·G)M .

(3.45)

3There is one more possibility, which is that we could add a term (q(4))XmΩm (with m indexing the space

V5) to the last line of (3.42), where Ωm is a chiral superfield. In components, this would generate a shift

δDX
abcd = qXmΛm

abcd, but there is no corresponding field labeled by m for which Λm is an ordinary gauge

parameter. In the dimensional reduction case, this would happen only if q > d, i.e. we are reducing a form

in D dimensions whose degree is greater than the spacetime dimension d.
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Note the beautiful symmetry4 between (3.42), (3.43) and (3.45). The same operations

appear in each set of equations to relate forms of different space-time degree.

The rest of the discussion goes mostly the same. We can still access Wess-Zumino

gauge5 for V I , ΣM , XS , and ΓX , and these fields still have the same component expansions.

The field strengths have been modified, but the relations to components (3.4), (3.16), (3.26),

and (3.35) are the same, only now in terms of the properly gauge-invariant bosonic field

strengths (2.7).

3.3 Gauge invariant kinetic terms

Since the superfield strengths are gauge invariant, a supersymmetric and gauge invariant

Lagrangian can be obtained by combining superfield strengths into chiral superfields and

integrating them over half of superspace or into real combinations and integrating over

all of superspace. Here, we present the simplest possibility, namely that we have a con-

stant metric on each Vp and use it to build simple quadratic combinations of the field

strengths. Explicitly,∫
d4xd4θ gABF

AFB =

∫
d4x gAB

[
− 1

2
FAaFBa −

1

2
∂aϕA∂aϕ

B +
1

2
fAf

B

− i

2
ψAσa∂aψ

B − qBI
(
ϕADI +

1√
2
ψAλI +

1√
2
ψ
A
λ
I
)]

, (3.46)

Re

(∫
d4xd2θ gIJW

IW J

)
=

∫
d4x

[
Im(gIJ)

(
−2DIqJM`

M +
1

4
εabcdF IabF

J
cd

)
+ Re(gIJ)

(
−1

2
F I abF Jab +DIDJ − qIMqJN`M`N − 2iλIσa∂aλ

J
)

+
√

2igIJq
J
Mλ

IχM −
√

2igIJq
J
Mλ

I
χM
]
, (3.47)∫

d4xd4θ gMNH
MHN =

∫
d4x gMN

[
1

3
FM abcFNabc + 2∂a`M∂a`

N − 2iχMσa∂aχ
N

+ 2qNS
(
−`MzS − iχMηS + iχMηS

)
+ 2qMS q

N
T y

SyT
]
, (3.48)

and6∫
d4xd4θ gSTG

SG
T

=

∫
d4x gST

[
− 1

24
FS abcdF Tabcd + zSzT − ∂ayS∂ayT − iηSσa∂aηT

]
.

(3.49)

4If we have one more map, (q(−2))mZ , then we could make the symmetry even clearer by adding a line

0 = qmZ E
Z at the top of the third set of equations, (3.45). Indeed, in the dimensional reduction example

where q is just the exterior derivative on the internal space, we do have such a map; q(−2) is just the exterior

derivative acting on (q + 2)-forms. For the other possible lack of symmetry, see footnote 3.
5Actually, this depends a bit delicately on the fact that q ·q = 0. For example, suppose we do an arbitrary

UM transformation. This will not generally leave V I in Wess-Zumino gauge, so we need to perform a

compensating ΛI(UM ) transformation to return V I to Wess-Zumino gauge. A priori, this compensating

transformation would affect the scalars, but in fact they remain invariant provided q(0) · q(1) = 0.
6On dimensional grounds, we need to take this D-term action to give a kinetic term for CS

abc, rather

than the F -term possibility
∫
d2θgSTG

SGT .
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Here gAB, gMN , and gST are constant real metrics. gIJ can a priori be complex, and unlike

in the usual case (without shifts), the action proportional to the imaginary part of gIJ is

not purely topological.

4 Bosonic Chern-Simons actions

With the invariant field strengths constructed in section 3, it is easy to write down gauge-

invariant supersymmetric actions simply by building real scalar (or chiral) combinations

and integrating them over all (or half) of superspace. However, there is another important

possibility, which is to have a Lagrangian that is not gauge invariant, but whose variation

vanishes when integrated over superspace. This is the hallmark of a Chern-Simons form.

In the next subsection we will review the typical example of this in the bosonic case, where

we build a d-form in d dimensions by wedging one potential φ[p0] and some number of field

strengths F[p1], · · · , F[pn], with
∑n

i=0 pi = d. Without shifts this would be gauge invariant

when integrated, since its variation is an exact form. This is what we will mean when

we say “Chern-Simons actions”. With shifts, we still have a chance of building something

invariant by taking linear combinations of such terms. After explaining the bosonic case

in this section, we will construct the supersymmetric analog in the next section.

4.1 Actions

Again, we restrict to the case d = 4, and denote our potential p-form fields aA, AI , BM ,

CS , and DX , for p running from zero to four respectively. We will consider the cases

n = 0, 1, 2, where n is the number of field strengths. It is not difficult to work out the story

for higher n, though such actions are then higher order than quadratic in derivatives.

4.1.1 Linear Chern-Simons terms

For n = 0, we can only construct a four-form by using DX ,

S0,CS =

∫
αXD

X , (4.1)

where αX are some set of constants. These terms are gauge invariant for any choice7 of

αX , since δDX = dΛX is exact. An example of this sort of coupling is given by D3-branes,

on which we have a coupling
∫
D3C[4].

4.1.2 Quadratic Chern-Simons terms

For n = 1, we have five possible terms,

S1,CS =

∫ {
α1ASa

AFS[4] + α2IMA
I ∧ FM[3]

+ α3MIB
M ∧ F I[2] + α4SAC

S ∧ FA[1] + α5XZD
XFZ[0]

}
. (4.2)

7This is true up to the possible caveat mentioned in footnote 3. In this case, gauge invariance under the

shifts parameterized by Ωm would require αXq
X
m = 0.
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The BF coupling proportional to α3 is probably the most familiar of these terms, but they

can all occur. Note also that in the case without shifts the terms are not all independent:

the α1 and α4 terms are related to each other by integration by parts, as are the α2 and

α3 terms. With shifts this is no longer true (although there can still be relations).

Under the gauge transformations (2.5), we have

δS1,CS =

∫ {
α1ASq

A
I ΛI[0]F

S
[4]+α2IM

(
dΛI[0]+q

I
NΛN[1]

)
∧ FM[3] +α3MI

(
dΛM[1]+q

M
S ΛS[2]

)
∧ F I[2]

+α4SA

(
dΛS[2] + qSXΛX[3]

)
∧ FA[1] + α5XZdΛX[3]F

Z
[0]

}
=

∫ {(
α1ASq

A
I + α2IMq

M
S

)
ΛI[0]F

S
[4] +

(
α2INq

I
M − α3MIq

I
N

)
ΛM[1] ∧ F

N
[3]

+
(
α3MIq

M
S + α4SAq

A
I

)
ΛS[2] ∧ F

I
[2] +

(
α4SAq

S
X − α5XZq

Z
A

)
ΛX[3] ∧ F

A
[1]

}
, (4.3)

where we have integrated by parts and used the Bianchi identities for the field strengths. In

order for this to be gauge invariant, we must require each of the combinations in parentheses

to vanish, i.e.

0 = α1ASq
A
I + α2IMq

M
S ,

0 = α2INq
I
M − α3MIq

I
N ,

0 = α3MIq
M
S + α4SAq

A
I , (4.4)

0 = α4SAq
S
X − α5XZq

Z
A.

4.1.3 Cubic Chern-Simons terms

Now we have nine possible terms

S2,CS =

∫ {
α1AZSa

AFZ[0]F
S
[4] + α2ABMa

AFB[1] ∧ F
M
[3] + α3AIJa

AF I[2] ∧ F
J
[2]

+α4IZMA
I ∧ FZ[0]F

M
[3] + α5IAJA

I ∧ FA[1] ∧ F
J
[2] + α6MZIB

M ∧ FZ[0]F
I
[2]

+α7MABB
M ∧ FA[1] ∧ F

B
[1] + α8SZAC

S ∧ FZ[0]F
A
[1] + α9XZZ′D

XFZ[0]F
Z′

[0]

}
. (4.5)

Without loss of generality we can take α3AIJ = α3AJI and α9XZZ′ = α9XZ′Z to be sym-

metric in their last two indices, and α7MAB = −α7MBA to be antisymmetric. The α3 term

is the familiar axionic coupling in four dimensions. The variation is given, after integration

by parts and use of Bianchi identities, by

δS2,CS =

∫ {
ΛI[0]

[(
α1AZSq

A
I + α4IZMq

M
S

)
FZ[0]F

S
[4]

+
(
α2BAMq

B
I + α4IZMq

Z
A − α5IAJq

J
M

)
FA[1] ∧ F

M
[3]

+
(
α3AJKq

A
I +α5IAJq

A
K

)
F J[2] ∧ F

K
[2]

]
+ΛM[1] ∧

[(
α4IZNq

I
M− α6MZIq

I
N

)
FZ[0]F

N
[3]

+
(
α5JAIq

J
M − α6MZIq

Z
A + 2α7MABq

B
I

)
FA[1] ∧ F

I
[2]

]
+ΛS[2] ∧

[(
α6MZIq

M
S + α8SZAq

A
I

)
FZ[0]F

I
[2]+

(
α7MABq

M
S − α8SZAq

Z
B

)
FA[1] ∧ F

B
[1]

]
+ΛX[3] ∧

(
α8SZAq

S
X − 2α9XZZ′q

Z′
A

)
FZ[0]F

A
[1]

}
. (4.6)

– 18 –



J
H
E
P
0
3
(
2
0
1
6
)
0
5
2

Recalling that FZ[0] = −qZAaA always carries a qZA, the vanishing of this variation is

equivalent to four equations that are linear in the qs,

0 = α2BAMq
B
I + α4IZMq

Z
A − α5IAJq

J
M ,

0 = α3AJKq
A
I + α5IA(Jq

A
K),

0 = α5JAIq
J
M − α6MZIq

Z
A + 2α7MABq

B
I , (4.7)

0 = α7MABq
M
S − α8SZ[Aq

Z
B],

and four that have an extra factor of qZA,

0 = α1BZSq
B
I q

Z
A + α4IZMq

M
S q

Z
A,

0 = α4IZNq
I
Mq

Z
A − α6MZIq

I
Nq

Z
A,

0 = α6MZIq
M
S q

Z
A + α8SZBq

B
I q

Z
A, (4.8)

0 = α8SZBq
S
Xq

Z
A − 2α9XZZ′q

Z
Aq

Z′
B .

4.2 Descent formalism

Each of the cases above (linear, quadratic, and cubic) can be combined into a nicely

packaged formalism by writing

SCS =

∫ {
aAc[4]A +AI ∧ c[3]I +BM ∧ c[2]M + CS ∧ c[1]S +DXc[0]X

}
, (4.9)

where each c[4−p]Ip is a polynomial in the field strengths. This action is invariant if

q
Ip
Ip+1

c[4−p]Ip − (−1)p dc[3−p]Ip+1
= 0, (4.10)

for each p = 0, · · · , 3.

In this formalism, the linear case is given by the solution c[1] = c[2] = c[3] = c[4] = 0,

c[0]X = αX is constant. The quadratic case has

c[4]A = α1ASF
S
[4],

c[3]I = α2IMF
M
[3] ,

c[2]M = α3MIF
I
[2], (4.11)

c[1]S = α4SAF
A
[1],

c[0]X = α5XZF
Z
[0].

Note that the requirement (4.10) that the forms c[p] must satisfy is very similar to the

Bianchi identities (2.13), except that we replace q by its transpose. For the quadratic

case in particular, the requirements derived from (4.4) are equivalent to the statement

that the αi give a pairing on the complex V• with respect to which the adjoint of q is

just the transpose of q. Then the descent relations (4.10) simply follow from the Bianchi

identities (2.13).
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Finally, for the cubic case, we read off

c[4]A = α1AZSF
Z
[0]F

S
[4] + α2ABMF

B
[1] ∧ F

M
[3] + α3AIJF

I
[2] ∧ F

J
[2],

c[3]I = α4IZMF
Z
[0]F

M
[3] + α5IAJF

A
[1] ∧ F

J
[2],

c[2]M = α6MZIF
Z
[0]F

I
[2] + α7MABF

A
[1] ∧ F

B
[1], (4.12)

c[1]S = α8SZAF
Z
[0]F

A
[1],

c[0]X = α9XZZ′F
Z
[0]F

Z′

[0] .

4.3 Examples from dimensional reduction

4.3.1 Dimensional reduction from 5 to 4

Consider a theory in five dimensions with a vector Ã. It is easy to generalize this story

to multiple five-dimensional vectors. This theory can have a Chern-Simons coupling of

the form

S5D,CS = γ

∫
Ã ∧ F̃ ∧ F̃ , (4.13)

where γ is a constant. Upon reduction on a circle (with coordinate y and radius R),

the five-dimensional vector gives rise to an infinite set (the KK tower) of axionic scalars

a(y)(x) = Ãy(x, y) and an infinite set of four-dimensional vectors A
(y)
a (x) = Ãa(x, y). We

also have a “matrix” (
q(0)
)(y)
(y′)

=
∂

∂y
δ(y − y′), (4.14)

and gauge transformation and field strengths

δa(y) =
∂

∂y
Λ
(y)
[0] , F

(y)
[1] = da(y) − ∂

∂y
A(y), and F

(y)
[2] = dA(y). (4.15)

In terms of four-dimensional couplings, the five-dimensional Chern-Simons action

would now be written as

S5D,CS =

∫ [
α3(y)(y′)(y′′)a

(y)F
(y′)
[2] ∧ F

(y′′)
[2] + α5(y)(y′)(y′′)A

(y) ∧ F (y′)
[1] ∧ F

(y′′)
[2]

]
, (4.16)

where

α3(y)(y′)(y′′) = γδ(y − y′)δ(y − y′′) and α5(y)(y′)(y′′) = 2γδ(y − y′)δ(y − y′′). (4.17)

To compare with more traditional presentations of Ka luża-Klein theory, let us do a

Fourier expansion,

Ã4(x, y) =
∑
n∈Z

an(x)einy/R, Ãa(x, y) =
∑
N∈Z

ANa (x)eiNy/R, (4.18)

with reality conditions (an)∗ = a−n, (ANa )∗ = A−Na . We used different labels n and N to

emphasize that these label bases for the space V0 and V1 respectively. Similarly, for the

gauge parameter we have an expression

Λ(x, y) =
∑
N∈Z

ΛNeiNy/R. (4.19)
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In this basis,

δan =
in

R
δnNΛN , δAN = dΛN , (4.20)

Fn[1] = dan − in

R
δnNA

N , FN[2] = dAN , (4.21)

and

α3nMP = γRδn+M+P,0, α5NmP = 2γRδN+m+P,0. (4.22)

Then one can verify that the action

S5D,CS =

∫  ∑
n,M,P

α3nMPa
nFM[2] ∧ F

P
[2] +

∑
N,m,P

α5NmPA
N ∧ Fm[1] ∧ F

P
[2]

 (4.23)

is invariant.

4.3.2 Dimensional reduction from 11 to 4

Eleven-dimensional supergravity has a three-form potential CMNP . Upon reduction to four

dimensions, this gives us potentials

a(ijk;y)(x) = Cijk(x, y),(
A(ij;y)

)
a

(x) = Caij(x, y),(
B(i;y)

)
ab

(x) = Cabi(x, y), (4.24)(
C(;y)

)
abc

(x) = Cabc(x, y).

Note that there is no four-form DX .

The matrices q are given by (2.25) with n = 3. The corresponding field strengths are

F(ijk`;y)(x) = 4∂[iCjk`](x, y),(
F(ijk;y)

)
a

(x) = ∂aCijk(x, y)− 3∂[iC|a|jk(x, y),(
F(ij;y)

)
ab

(x) = 2∂[aCb]ij(x, y) + 2∂[iC|ab|j](x, y), (4.25)(
F(i;y)

)
abc

(x) = 3∂[aCbc]i(x, y)− ∂iCabc(x, y),(
F(;y)

)
abcd

(x) = 4∂[aCbcd](x, y).

These satisfy Bianchi identities (2.13) in the form,

0 = −5∂[iF[0](jk`m];y),

dF[0](ijk`;y) = 4∂[iF[1](jk`];y),

dF[1](ijk;y) = −3∂[iF[2](jk];y),

dF[2](ij;y) = 2∂[iF[3](j];y), (4.26)

dF[3](i;y) = −∂iF[4](;y),

dF[4](;y) = 0.
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The eleven-dimensional theory has a Chern-Simons term

κ

∫
C ∧ dC ∧ dC, (4.27)

where κ is a constant. Reducing to four dimensions we can write it in the form (4.9), with

c
(ijk;y)
[4] =

κ

3!4!
εijk`mnp

(
2F[0](`mnp;y)F[4](;y) − 8F[1](`mn;y) ∧ F[3](p;y) + 6F[2](`m;y) ∧ F[2](np;y)

)
,

c
(ij;y)
[3] =

κ

2!5!
εijk`mnp

(
10F[0](k`mn;y)F[3](p;y) + 20F[1](k`m;y) ∧ F[2](np;y)

)
,

c
(i;y)
[2] =

κ

6!
εijk`mnp

(
30F[0](jk`m;y)F[2](np;y) − 20F[1](jk`;y) ∧ F[1](mnp;y)

)
, (4.28)

c
(;y)
[1] =

70κ

7!
εijk`mnpF[0](ijk`;y)F[1](mnp;y).

We can verify that these satisfy (4.10).

We can also read off the α coefficients by comparing (4.28) with (4.12). The result is

α
(ijk;y)(`mnp;y′)(;y′′)
1 =

κ

72
εijk`mnpδ(y − y′)δ(y − y′′),

α
(ijk;y)(`mn;y′)(p;y′′)
2 = − κ

18
εijk`mnpδ(y − y′)δ(y − y′′),

α
(ijk;y)(`m;y′)(np;y′′)
3 =

κ

24
εijk`mnpδ(y − y′)δ(y − y′′),

α
(ij;y)(k`mn;y′)(p;y′′)
4 =

κ

24
εijk`mnpδ(y − y′)δ(y − y′′),

α
(ij;y)(k`m;y′)(np;y′′)
5 =

κ

12
εijk`mnpδ(y − y′)δ(y − y′′), (4.29)

α
(i;y)(jk`m;y′)(np;y′′)
6 =

κ

24
εijk`mnpδ(y − y′)δ(y − y′′),

α
(i;y)(jk`;y′)(mnp;y′′)
7 = − κ

36
εijk`mnpδ(y − y′)δ(y − y′′),

α
(;y)(ijk`;y′)(mnp;y′′)
8 =

κ

72
εijk`mnpδ(y − y′)δ(y − y′′).

There is no α9 because there is no four-form potential.

5 Superfield Chern-Simons actions

Now we make use of the superfields we defined in section 3 and write down supersym-

metrizations of these Chern-Simons actions.

5.1 Actions

5.1.1 Linear Chern-Simons terms

In the case of the linear Chern-Simons term (cf. section 4.1.1), it turns out that, surprisingly,

the bosonic action is already supersymmetric, since we have

S0,SCS = Re

[
i

∫
d4xd2θαXΓX

]
=

∫
αXD

X = S0,CS. (5.1)
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As before it is gauge invariant,

δS0,SCS = Re

[
i

∫
d4xd2θαX

(
−1

4
D̄2ΞX

)]
= Re

[
i

∫
d4xd4θαXΞX

]
= 0, (5.2)

where in the last step we used that d4θ, αX , and ΞX are real, so the quantity in square

brackets is purely imaginary. Note that this Fayet-Iliopulos type term is proportional to

the F -term of the chiral multiplet ΓX and may play an interesting role in the breaking of

supersymmetry.

5.1.2 Quadratic Chern-Simons terms

In this case, the supersymmetrization of the Chern-Simons action has the form

S1,SCS =

∫
d4xd4θ

(
α2IMV

IHM − α4SAX
SFA

)
+ Re

[
i

∫
d4xd2θ

(
α1ASΦAGS + α3MIΣ

M αW I
α + α5XZΓXEZ

)]
. (5.3)

When expanded into components, the resulting action contains (4.2), but will have

many other pieces involving the superpartners as well as additional bosons required

by supersymmetry.

Under the supersymmetric gauge transformations (3.42), the action changes by

δS1,SCS =

∫
d4xd4θ

(
α2IM

(
1

2i

(
ΛI − Λ

I
)

+ (q · U)I
)
HM

−α4SA

(
1

2i

(
DαΥS

α − D̄α̇Υ
S α̇
)

+ (q · Ξ)S
)
FA
)

+ Re

[
i

∫
d4xd2θ

(
α1AS (q · Λ)AGS+α3MI

(
−1

4
D̄2DαUM+(q ·Υα)M

)
W I
α

+α5XZ

(
−1

4
D̄2ΞX

)
EZ
)]

=

∫
d4xd4θ

((
α2INq

I
M − α3MIq

I
N

)
UMHN −

(
α4SAq

S
X − α5XZq

Z
A

)
ΞXFA

)
+ Re

[
i

∫
d4xd2θ

((
α1ASq

A
I +α2IMq

M
S

)
ΛIGS+

(
α3MIq

M
S +α4SAq

A
I

)
ΥS αW I

α

)]
.

(5.4)

Here we have used eq. (A.3) relating the measures d4θ and d2θ, the superspace analog of

integrations by parts, and the Bianchi identities (3.45). We can immediately see that the

conditions for gauge invariance are precisely those found for the invariance of the bosonic

action (cf. eq. (4.4)).

5.1.3 Cubic Chern-Simons terms

Similarly we can supersymmetrize the cubic Chern-Simons action (4.5). First we have to

make a couple of definitions. Let

Φ̂A =
ΦA + Φ

A

2
, ÊZ =

EZ + E
Z

2
= qZAΦ̂A. (5.5)
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We also define an operator

Ω(U,Ψ) = DαUΨα + D̄α̇UΨ
α̇

+
1

2
U
(
DαΨα + D̄α̇Ψ

α̇
)
, (5.6)

which takes as arguments a real superfield U and a chiral spinor superfield Ψ, and returns

a real superfield. This operator has some nice properties. In particular,

−1

4
D̄2Ω(U,Ψ) =

(
−1

4
D̄2DαU

)
Ψα −

1

8
D̄2
[
U
(
DαΨα − D̄α̇Ψ

α̇
)]
, (5.7)

−1

4
D2Ω(U,Ψ) =

(
−1

4
D2D̄α̇U

)
Ψ
α̇

+
1

8
D2
[
U
(
DαΨα − D̄α̇Ψ

α̇
)]
. (5.8)

Also,

U1Ω(U2,Ψ) + U2Ω(U1,Ψ) = Dα (U1U2Ψα) + D̄α̇

(
U1U2Ψ

α̇
)
, (5.9)

and if we define Ψα
i = −1

4D̄
2DαUi, then

Ω(U1,Ψ2)− Ω(U2,Ψ1) = −1

8
DαD̄2 (U1DαU2 − U2DαU1)−

1

8
D̄α̇D

2
(
U1D̄

α̇U2−U2D̄
α̇U1

)
,

(5.10)

and

U1Ω(U2,Ψ3) + U2Ω(U3,Ψ1) + U3Ω(U1,Ψ2) = Dα (· · ·) + D̄α̇ (· · ·) , (5.11)

where we won’t need the explicit form of the omitted terms (· · ·) but only the fact that the

right hand side is a total superspace derivative and, therefore, vanishes when integrated

over
∫
d4xd4θ.

With these definitions, one can write the supersymmetrized Chern-Simons action as

S2,SCS =

∫
d4xd4θ

[
α2ABM Φ̂AFBHM + α4IZMV

IÊZHM + α5IAJV
IΩ(FA,W J)

+α7MABF
AΩ(FB,ΣM )− α8SZAX

SÊZFA
]

+ Re

[
i

∫
d4xd2θ

(
α1AZSΦAEZGS

+α3AIJΦAW I αW J
α + α6MZIE

ZΣM αW I
α + α9XZZ′Γ

XEZEZ
′
)]

(5.12)

After some manipulations, its variation has the form

δS2,SCS =

∫
d4xd4θ

[(
α2BAMq

B
I + α4IZMq

Z
A − α5IAJq

J
M

) ΛI + Λ
I

2
FAHM

+
(
α4IZNq

I
M − α6MZIq

I
N

)
UM ÊZHN

+
(
α5JAIq

J
M − α6MZIq

Z
A + 2α7MZBq

B
I

)
UMΩ(FA,W I)

+
(
α7MABq

M
S −α8SZAq

Z
B

)
FAΩ(FB,ΥS)−

(
α8SZAq

S
X−2α9XZZ′q

Z′
A

)
ΞXÊZFA

]

+ Re

[
i

∫
d4xd2θ

((
α1AZSq

A
I + α4IZMq

M
S

)
ΛIEZGS

+
(
α3AJKq

A
I + α5IAJq

A
K

)
ΛIW J αWK

α +
(
α6MZIq

M
S + α8SZAq

A
I

)
EZΥS αW I

α

) ]
.

(5.13)
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We see that the conditions for gauge invariance are again precisely (4.7) and (4.8), as in

the bosonic case.

We now have all the details needed to write down the four-dimensional N = 1 off-

shell supersymmetrization of the eleven-dimensional Chern-Simons term. It will be given

by (5.12), with the coefficients α given by (4.29).

5.2 Descent formalism

We would now like to imitate the bosonic descent formalism and unify the cases above.

Thus we write the action in general as

SSCS =

∫
d4xd4θ

(
V Ic3I −XSc1S

)
+ Re

[
i

∫
d4xd2θ

(
ΦAc4A + ΣM αc2M α + ΓXc0X

)]
.

(5.14)

Here c3I and c1S are real superfields, c4A and c0X are chiral superfields, and c2M is a chiral

spinor superfield. All of these are built out of the field strengths EZ , FA, W I , HM , and GS .

Explicitly for the cases above, we have for the linear Chern-Simons action,

c0X = αX , (5.15)

with the other c’s vanishing. For the quadratic Chern-Simons action we have

c4A = α1ASG
S ,

c3I = α2IMH
M ,

c2M α = α3MIW
I
α, (5.16)

c1S = α4SAF
A,

c0X = α5XZE
Z .

And for the cubic action,

c4A = α1AZSE
ZGS + α3AIJW

I αW J
α +

i

4
α2ABM D̄

2
(
FBHM

)
,

c3I = α4IZM Ê
ZHM + α5IAJΩ(FA,W J),

c2M α = α6MZIE
ZW I

α +
i

2
α7MABD̄

2
(
FADαF

B
)
, (5.17)

c1S = α8SZAÊ
ZFA,

c0X = α9XZZ′E
ZEZ

′
.

For the general action (5.14), invariance under variation requires

0 = −1

4
D̄2c3I − qAI c4A,

0 =
Dαc2M α − D̄α̇c

α̇
2M

2i
+ qIMc3I ,

0 = −1

4
D̄2Dαc1S − qMS c2M α,

0 =
c0X − c0X

2i
+ qSXc1S .

(5.18)
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Again we see the appearance of the same operators. We can also verify that for the linear,

quadratic, and cubic cases above, imposing (5.18) is equivalent to the conditions on the

α’s and q’s that were already deduced.

6 Prospects

The aim of our current program is to describe the actions appearing in a supersymmetric

Kaluza-Klein compactification of ten-dimensional type II theory or M-theory involving

massless fields and an infinite tower of massive fields in a closed form. In recent times it has

become evident that particularly the massive states include a host of physical information,

such as the appearance of a new superpotential describing their interactions [11].

In this paper, we have taken a step in the direction of constructing these actions by em-

bedding the Abelian tensor hierarchy appearing in such reductions into four-dimensional,

N = 1 superspace and explicitly presenting standard kinetic actions as integrals of gauge

invariant chiral quantities over half of superspace or real quantities over all of superspace.

We also constructed Chern-Simons-type actions which are supersymmetric in the usual

way but which are only gauge invariant after combining many terms and integrating over

superspace. As we have stated, these models are inspired by but not identical to the em-

bedding of a higher dimensional antisymmetric tensor field into d-dimensional superspace

(d = 4 is the example we focused on) because it has additional bosonic components needed

to complete the supersymmetry multiplet.

Embedding this Abelian tensor hierarchy into superfield supergravity is non-trivial and

we propose to proceed in two steps. The first step is to gauge the hierarchy with respect to

the vector-like components of the dimensionally reduced metric. In a forthcoming paper [19]

we do this by coupling this Abelian model to non-abelian gauge fields. The second step is to

reconcile the component field mismatch alluded to above. A comparison of the components

of 11D supergravity to those of the hierarchy shows that there are (at least) the 35 + 7

superfluous scalars coming from the scalar and two-form multiplets, respectively as the

bosonic partners required to complete the multiplet. On the other hand, the remaining

supergravity components have not yet been accounted for and it is known from previous

work [25, 26] that including these superspin- 32 and -1 multiplets has the potential to resolve

this mismatch. Including the coupling to these fields is work currently in progress [20]. The

goal ultimately is to the embed the action eq. (4.1) of ref. [12] in four-dimensional, N = 1

superspace in order to learn about quantum corrections of M-theory in terms of powerful

non-renormalization theorems in four dimensional superspace.

A natural toy model for eleven-dimensional supergravity is 5D, N = 1 supergravity.

It contains a “graviphoton” analogous to the M-theory three-form for which one can write

a Chern-Simons action. A natural thing to do, therefore, is to extend the program to

include 5D, N = 1 superspace [27] and relate it to the supergravity theory of ref. [28, 29].

Alternatively, one can attempt to increase the amount of manifest supersymmetry to 6D,

N = (1, 0) leaving only five additional directions and six non-linear supersymmetries. The

curved superspace for such an extension was constructed in [30] and an action was proposed

based on that of ref. [31]. The action was recently reduced to 4D, N = 1 superspace notation
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in ref. [32, 33]. This 4D, N = 1 description of 6D, N = (1, 0) supergravity and related

results may prove useful in the construction of the eleven-dimensional action.
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A Conventions

In this appendix, we collect some oft-used identities satisfied by the four-dimensional,

N = 1 superspace covariant derivatives. Our conventions are those of [21] (which are

closely related to those of [22]).

The basic identities satisfied by the superspace covariant derivatives are{
Dα, D̄α̇

}
= −2iσaαα̇∂a, {Dα, Dβ} = 0 =

{
D̄α̇, D̄β̇

}
, (A.1)

with σa the usual Pauli matrices. The (flat) spacetime indices will be denoted by lowercase

Latin letters a, b, · · · = 0, 1, 2, 3. Chiral and anti-chiral spinor indices are denoted by Greek

letters taking two values α, β, · · · = 1, 2 and α̇, β̇, · · · = 1, 2.

Manipulating these fundamental D-algebra rules results in the following list of useful

relations:

D̄α̇D̄
2 = 0 , DαD

2 = 0 (A.2a)

[D2, D̄α̇] = − 4iσaαα̇∂aD
α , [D̄2, Dα] = 4iσaαα̇∂aD̄

α̇ (A.2b)

DαD̄2Dα = D̄α̇D
2D̄α̇ , [D2, D̄2] = − 4iσaαα̇∂a[D

α, D̄α̇] (A.2c)

2 = −1

8
DαD̄2Dα +

1

16
D2D̄2 +

1

16
D̄2D2 (A.2d)

D̄2DαD̄
2 = 0 , D2D̄α̇D

2 = 0. (A.2e)

These identities are crucial to our analysis and will be used repeatedly throughout

the paper.

The measures on superspace are given in terms of super-covariant derivatives by

d2θ = −1

4
D2, d2θ̄ = −1

4
D̄2, d4θ =

1

16
D2D̄2. (A.3)

When appearing integrated, it is implied that the result is projected onto the θ = 0 = θ̄

subspace. For example, the chiral integral
∫
d2θW = −1

4D
2W
∣∣∣ where as is standard in the

superspace literature, we use the notation (. . . )
∣∣∣ to indicate that (. . . ) is to be evaluated

on the θ = 0 = θ̄ subspace.
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We use the Spin(3, 1) ∼= SL(2;C) invariant ε and its conjugate to define

(σa)α̇α = εαβεα̇β̇σa
ββ̇
. (A.4)

Together with the original Pauli matrices, these satisfy σaσ̄b+σaσ̄b = 2ηab and σ̄aσb+σ̄aσb =

2ηab. The opposite signs define the spin matrices which we normalize by

(σab)
β
α =

1

4
(σaσb − σbσa) β

α , (A.5)

and

(σab)
α̇
β̇

=
1

4
(σaσb − σbσa)α̇β̇ . (A.6)

These matrices are symmetric when the upper spinor index is lowered (or vice versa).
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