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1 Introduction

A diversity of matter fields and interactions in a d-dimensional space-time can sometimes
be described by a simpler theory in higher, say D, dimensions. This idea was pioneered
almost 100 years ago by Kaluza and Klein in an attempt to unify four-dimensional elec-
tromagnetism and gravity in terms of five-dimensional gravity. It is still one of the most
intriguing approaches to unify gravitation with other forces in nature. It unifies different
phenomena in d dimensions and makes predictions. In the original Kaluza and Klein case
one massless scalar was predicted.

Supergravity theories in D = 10 or D = 11 dimensions are a natural starting point.
In this note we take the ground state to be a direct product of d-dimensional Minkowski
space-time, M?, and a smooth and compact Riemannian manifold Y. We are primarily
interested in preserving supersymmetry in space-time which requires the holonomy group of
the metric on Y to be a certain subgroup of the orthogonal group. The different possibilities
are on Berger’s list.

We then wish to describe the fluctuations about the ground state. Our goal is to
construct the d-dimensional space-time effective action for all fields, not only the massless
sector. To do this our guiding principles are locality in d and D —d dimensions. Locality in d
dimensions is achieved by letting the fields depend covariantly on space-time coordinates.



Moreover, these fields are also functions or forms along Y. This is locality in D — d
dimensions. The coordinates on the internal space are then interpreted as labels in the
d-dimensional theory. The results are most naturally written using abbreviated “DeWitt”
notation [1].

In this note we will present a closed expression for the space-time effective action for
all fields (massless and massive) obtained from the compactification of type II and eleven-
dimensional supergravities to d space-time dimensions. In a forthcoming publication [2] we
will present the manifestly supersymmetric actions. Some of the interactions were predicted
in ref. [3]. With the component actions at hand it should be possible to obtain the full action
in superspace and compare with the predictions of ref. [3]. Our approach has similarities
with the program begun in refs. [4], in which eleven-dimensional supergravity fields were
written according to a 4 4 7 split of the space-time coordinates, as an intermediate step to
making manifest a local SU(8) symmetry. However, the goal of the present work is to give
a completely general result for the reduction of gravitational theories.

In section 2 we study the compactification of the Einstein-Hilbert action to arbitrary
space-time dimensions. We present a closed expression for the space-time effective action
for fields arising from the metric and we analyze the non-abelian gauge symmetry arising
from diffeomorphisms. In section 3 antisymmetric tensor fields are discussed. We consider
both kinetic and Chern-Simons terms. In the summary we present the complete action for
all fields in an example. Using the results presented in this paper an action for all fields for
the compactification of any supergravity theory to any number of space-time dimensions
can be written down.

2 Einstein-Hilbert action

The Einstein-Hilbert action in D space-time dimensions is'

S = ;I#/dDa:\/zqR. (2.1)
Here we have included an unspecified function g. This function can depend on fields (for
example, the dilaton in type II supergravity in the string frame) but does not depend on
the metric. In D # 2 dimensions g can be removed by a metric rescaling, but often we
may wish to work in a frame (like the string frame) which includes non-trivial q.

We wish to construct the action for the fluctuations about the ground state with metric
GMN. To do this we expand the metric Gj;n about this ground state

GunN :éMN+5GMN- (2.2)
The Christoffel symbol becomes

Iy =Ty + 00 N, (2.3)

! In what follows, indices M, N, ..., ju,v, ... and a,b, ... are tangent to the D-, d- and D — d-dimensional
spaces, respectively. We always sum over repeated indices.



where

1 - - .
6Ty = 5G (VarGrn + VGrar = VG ) - (2.4)
is a tensor. After partial integration the gravitational action becomes

1 . N N
S = By dPxv/—Gq |:GMKRMK + QGM[NGP}QVM(Iogq)VNGPQ

1 - .
+ <GPUGQ[TGR}S -~ QGRUGP[SGQ]T> vRGPQvUGST.].
(2.5)

Note that this result includes all orders in the perturbations of the metric. The inverse

metric GMY will, in general, be an infinite expansion since it is obtained by inverting
eq. (2.2). Here and in the following hatted quantities refer to the ground state. So, for

example, V is the Levi-Civita connection of the background metric.

2.1 Compactification

Next we take the ground state to be M? x Y, where M? is d-dimensional Minkowski
space-time with coordinates z#, u = 0,...,d — 1 and with metric CA?W = N and Y is
a (D — d)-dimensional internal manifold with coordinates y*, a = d,..., D and metric
Gab = Jap(y). We take the holonomy group of the metric on Y to be a subgroup of the
orthogonal group, which leads to some amount of unbroken supersymmetry in space-time.
Moreover, we remark here that we are not interested in engineering a ground state with
particular properties. Rather we take the internal space to be the most generic special
holonomy manifold and we wish to describe the fluctuations about this ground state in
full generality.

The fluctuations are encoded in the metric

GMN _ h,uzz + gcdfluAu gbcAu 7 (2 6)
gacAy Gab
and its inverse
hH _ P AL
GMN — p . 2.7
(—wz gab+szz> >0

Here
h,ul/ = huu(xa y), Gab = gab(a;v y)7 Az - AZ(.T, y)- (28)

The fields depend on z*, since these are d-dimensional fields, while the y* dependence
is interpreted as a continuous label carried by the space-time fields. Any D-dimensional

metric can be written in this form. Note that the inverse metric contains terms which are
0
most quartic. The ground state corresponds to

at most quadratic in A%, and as we will see next the action contains terms which are at

huu = Nuv, Gab = gab(@/)7 AZ =0. (2-9)



2.2 The action

Using the metric (2.6) and its inverse (2.7) the action (2.5) becomes
S = Skin + Spot + Sgaugea (2‘10)

with kinetic terms
Siin = % / AV [(hﬁuhv[pha}u _ ;hauhﬁ[uhv]p> DohgyDyuhuy
— W R GOD Do gap + %h“”g“[bgdd%gab%gcd (2.11)
+ 20 BP9 D (log ¢) Dy hypo + B gD, (log q)@,,gab} ,

potential terms

1 1 - - . .
Spot = ﬁ /dv [Qh#[yhg}pgabvahw/vbhpa + huyga[bgc]dvahuuvbgcd

. R 1. .
+ gabnggef( = VagepVidgel s + 2vagc[dv|b|ge]f> (2.12)
+ huygab@a(l()g Q)@bhuu + 2ga[bgc}d@a (log Q)@bgcd] ’

and gauge field action

1
Sgauge =~ g AV I WP 9oy T T, (2.13)

Here
AV = d%xdP =y ¢/ ~h /7, (2.14)

with § = det gu(y) and g = det gup(2, y). Moreover, we have defined the field strength

a a b a
EFMV - 28“1/414 - 2A[#V‘b‘Ay], (215)

and covariant derivatives

Duq = 0uq — VaqAj,
Dygab = OuGab — gacﬁbAz - gbc?aA,‘i - @cgabz‘lfm (2.16)
Dyhup = Ouhup — Vahy Al
In section 2.2 we will explain the symmetry of the space-time effective action arising from
D-dimensional covariance. This will determine the choice of field strength and covari-

ant derivatives.

Since the ground state metric is Ricci flat we have set
R, =0,  Rgy=0. (2.17)

But note that in deriving the space-time effective action we have not used the Ricci flatness
of the internal space anywhere. A compactification on a non-Ricci flat space, say a sphere,



leads to the effective action presented in section 2.2 together with an additional term
obtained by taking the first term in the bracket of eq. (2.5) into account.

This action can be further rewritten to obtain canonical kinetic terms, for example.
While the above result is general, further simplifications are case dependent. Both A, and
Jgap can be further rescaled to obtain an action with some desired properties. For example,
as we show below in the context of eleven-dimensional supergravity, h,, can be rescaled by
appropriate functions to obtain canonical kinetic terms. It is straightforward but tedious to
show that canonical kinetic terms can indeed be obtained for any value of D and for d > 2.

2.3 Symmetries

In general relativity the space-time is a Riemannian manifold. The physical equations
are covariant in the sense that they preserve their form under coordinate transformations
M — 2™ If the coordinate transformation is close to the identity we set

oM g™ = M Mgy, (2.18)
where €M is a vector field. The metric then changes by the infinitessimal amount
5GMN($> = G/]\/[N<$) — GMN(-%') = fRaRGMN + GRNaMfR + GMRaNfR. (2.19)

Once compactified, covariance in D dimensions gives rise to the symmetries of the space-
time effective theory in d dimensions.

Next we derive how space-time fields change after coordinate transformations with
parameters {* = {*(z,y) and & = £#(x,y). Lets consider the coordinate transformations
with parameter £* first. Given the transformation of the metric in eq.(2.19) it is a small
exercise to determine how space-time fields transform. The result is

g = Vaqt®,
5gab = vcgabfC + gacvb€c + gbcvaéca
5h,u,u = @ahuué%z
SAS = 9,6 + V,Augh — Abv,ee.

(2.20)

The covariant derivatives defined in eq. (2.16) transform nicely (no space-time derivatives
of the gauge parameter appearing) under coordinate transformations with parameter £%.

Indeed,

5 (Dpug) = Va (Dug) £,
o (D,ugab) = vc (Dugab) é—c + Dugacvbgc + D,ugbcvagca (221)
§ (Duhyp) = Va (Dyuhy,) &7,

while for the field strength we find

54, =V Fa, b — b Ve, (2.22)



Next consider coordinate transformations with parameter £#. We find

dq = 098",
89ab = Ougab™ + GacASVbE" + gocASV oEF,
Shyw = Ophyun€” + hupOu” + hup0u€” — hyup ALV o€ — hyp ALV 4EP,
SAY = hyg V" — AL ALVLEY + ALD,EY + O, ALE”.

(2.23)

General coordinate transformations of the d-dimensional space-time correspond to trans-
formations with parameter {# = &#(z) with no y dependence, and for d-dimensional
Minkowski space the global Poincaré transformations correspond to &# = a* + A¥, 2.
However, the above transformations are more general. We note that when combined with
the non-abelian gauge transformations in space-time explained in detail in the next section
the external diffeomorphisms generated by &* give rise to an algebra which extends the
Poincaré algebra in a non-trivial way. It will be fascinating to further study properties of

the resulting algebras [2].

2.4 The non-abelian gauge symmetry in space-time

The diffeomorphism group on the internal manifold Y is the group of all one-to-one dif-
ferentiable maps of Y onto itself. The inverse maps are also differentiable. The group
multiplication is the composition of maps. This group is denoted by Diff(Y). A dif-
feomorphism that is sufficiently close to the identity can be interpreted as a coordinate
transformation

Yt =yt =yt -, (2.24)

for some vector field £* = £%(x, y). We take the x dependence to be arbitrary but fixed. As
we explain next Diff(Y) appears as a gauge symmetry in space-time. It is an unconventional
gauge group, since it is infinite dimensional. The structure constants of the associated Lie
algebra can be found in ref. [1], for example.

To interpret Diff(Y') as gauge symmetry it is most convenient to use abbreviated “De-
Witt” notation [1]. We use this notation for all indices pertaining to the internal space
while we keep the space-time indices explicit. From the d-dimensional space-time point of
view, y should be viewed as part of the field label rather than as a coordinate. To make
this manifest, we will write, for instance

Al(z) = Aj(z,y), (2.25)

where we have suppressed the y dependence and where a now stands for the index com-
bination (a;y). This combination will be considered as a composite index labeling the
d-dimensional gauge fields. A sum over field labels should then include an integral over
y as well as a sum over a. A prime on an index, say Azl(x), is a condensed notation
for Af.(z,y').

Let us briefly review the situation for a finite dimensional gauge group with the aim of
generalizing to the infinite dimensional case. The reasoning below will later also be applied



to tensor fields. In the finite dimensional case the infinitesimal gauge transformations and
the field strength are related to the structure constants by

SAL = N + [ ALNY,  FL, =20,A5 + fijkAfHAk (2.26)

V)

where fzj i are the structure constants and 4, j, and k run over a basis for the Lie algebra.
The transformations on AL close if the structure constants satisfy the familiar properties

et =00 I e = 0, (2.27)
and in this case we have
[01,00) AL, = 8341, with Ay = [ ML, (2.28)
If the gauge transformations act linearly on the space of scalars ¢,
5™ = (t)™, $" N, (2.29)

then closure of the transformations on ¢%, with the same commutation as above, requires
the matrices (¢;)™,, to satisfy

[t tj] = fkijtk- (2.30)

This is just the statement that the ¢" transform as a representation of the gauge group.
Turning to the case of interest we note that the variation of Af in eq. (2.20) can be
recast in the form

SAL = 0\ + [ ADXT (2.31)

where
IO = 080:6(y — )0y —y") — 0%45(y — v )owd (y — o), (2.32)

are the structure constants of the diffeomorphism group. Indeed, note that in uncondensed
notation the second term on the right hand side of eq. (2.31) is

/dD_dy’dD_dy” [670:0(y — /' )6(y — y") — 656(y — y)0ub (y — y")] AL()E°(Y"), (2.33)
which by explicitly evaluating the integral becomes
Vy ALt — ALV, (2.34)

Here we have identified A* = £. In the last step we used that the dependence on Christoffel
symbols cancels out of this expression, and we have suppressed the = dependence. Moreover,
in abbreviated notation the field strength (2.15) is

a a a b qc”
?NV = 28[MAZ/] + f /CNAM AV 5 (235)

as can be easily verified.



The scalar fields, ¢ and g,p, both transform linearly (and don’t mix) under these gauge
transformations. As above, if we use abbreviated notation ¢ = ¢(x,y) and gu(z) =
gab(x,y), we have the representations

(ta)” ) =0y — ) 0ud(y — y"), (2.36)
and
(" = 51695 (y — 1)0ab(y — y") + 268%60)06(y — v/ )3 (y — ¢
(ta)(bc)/ ~ %% %) (y y) a (y Yy )+2 a %pY) (y y) (y Yy ) (2'37)

Again, these have been chosen to match the previous expressions for dg and d¢g.,. And
again, it is a short calculation to show that these do indeed furnish a representation of
the infinite dimensional non-abelian group by verifying that eqs. (2.36) and (2.37) satisfy
eq. (2.30). We also note that the covariant derivatives defined in eq. (2.16) take the form

Du(lsab"' _ 8,u¢abm _ AZ(tb’)abm(ab...)"‘b(ab'")”, (2.38)
for any field ¢® = ¢ (x,7) transforming in some representation of the gauge group.
So, for example,

Dpug” = Oug” — Al (t)",nq" (2.39)

with ¢ given in eq. (2.36).

So far very few assumptions have been made about the internal space Y and by keeping
locality on Y manifest we obtained quite general closed expressions. However, if desired
these expressions can be further transformed in a case dependent manner. Say if Y = S* the
fields and parameters can be Fourier expanded if periodic boundary conditions are imposed.
As can be seen by Fourier transforming eq. (2.32), in this case the gauge symmetry is the
Virasoro algebra without central extension as has been realized in ref. [5], for example.

2.5 Eleven-dimensional supergravity

In this subsection we elaborate the example of eleven-dimensional supergravity [6] com-
pactified to d space-time dimensions. Compared to the previous section we further rescale
the space-time metric to obtain canonical kinetic terms.

The Einstein-Hilbert action in eleven dimensions is

5= / d"'zv~-GR. (2.40)

= 9k2

We take the eleven-dimensional metric to be of Kaluza-Klein form

y . AcAd CAc
GacAy Yab

Here we have rescaled the fields h,, by the function

" 1
f:<g> Nt (2.42)

to obtain a canonically normalized Einstein-Hilbert action in d > 2 dimensions.



The effective action separates into a kinetic piece

1
Siin = —5.3 / dvh®? [(kg“bng + g“gbd> %gab@ﬁgcd]

1 1 (2.43)
_,_27/# dv <hﬁuhv[pha]l’ _ 2hauh5[vhv]p> Dalipy Dby,
potential terms
1 g K A A - -
Spot =13 / dv <g) { g hBRHIYN (b s Vb — WP (k:gabgc”l + g“cgbd) VahasViged
pt _qu T8 1ps qt ru pr_qu st 4_d2pq ru, st| © =
+ 979" - 5979"g + 2kg" g™g +7k9 99| VegpgVugst ¢
(2.44)
and the gauge field action
1 g g af v a b
Sgauge — _@ dv g h h‘ gabi}r’allgj v (245)

where

dv = dzd" v/ =h\/4. (2.46)

The above expressions are valid if d # 2. In two dimensions the Einstein-Hilbert action is
scale invariant and a canonically normalized Eintein-Hilbert action cannot be obtained. As
discussed in section 2.3 this action describes an unconventional gauge theory with gauge
group Diff(Y).

Again, our goal is generality, which we achieve by keeping locality along Y manifest.
If however Y = S, for example, the fields can be Fourier transformed. The above action
then describes a finite set of massless fields and an infinite tower of massive states. There
is a massless graviton and an infinite set of massive spin 2 fields. In addition there are
vectors and scalars.

The covariant derivatives D, are

ngab = a,oga,b - Azacgab - 290((18(;)14;7

j N (2.47)
Dphya = Ophyy — ASDehya — 2k VAS,

Note that for simplicity we have used the same symbol h,, to denote two different fields.
The field used here differs from the one used in sections 2.1 and 2.2 by a factor of f.

3 Anti-symmetric tensor fields

The standard kinetic term for antisymmetric tensors F' = dC in D dimensions is

L

Stensor - _4,432

1
de\/ —GHGMlNl s GMPNPFMl‘..MpFNl‘..Np. (31)

We wish to construct the d-dimensional space-time effective action.



3.1 Compactification

The cleanest method to obtain the space-time effective action is to use the following basis
of the cotangent space

Dy® = dz“,

(3.2)
Dy® = dy® + A%dx®,
and the dual basis of the tangent space
D 0 . 0
Do=5 3 =7545 4oy o
y ox oy
D P (3.3)
D,=—= .
a Dye Oy
We call this the “new basis”. Given the pairing (, ) : 7Y x T,Y — R with
0
N _sN
<dy ) 8yM> = s (3.4)
the new basis was chosen such that
D
N Y
<Dy 7DyM> = 0, (3.5)
for indices M, N--- = 1,...,D. We use the symbol 4" to label the coordinates of the
D-dimensional space. Our index conventions are explained in footnote 1.
A differential n-form w can then be expanded in either basis
1 1.
w=—wn, N, Ay A ANdyNr = =Ty, N, DyM A - A Dy (3.6)

n! n!
Explicitly the components of a differential form with = indices parallel to Y and s indices
parallel to M? are

wal...arozl...as = Wa...arA1...As (5&411 - Alc)yll 51;411) R (6&4: - Alc)ysgélis) (37)
The inverse relation is
Way..aran..as = °~Ja1...arA1...As (5&411 + Agll 612?) s (5&4; + Agfs 51125) (3'8)

In order to avoid cluttering the equations we sometimes label the components of tensors
in the new basis by typewriter letters, for example C, F. The components of the exterior
derivative of a differential n-form expanded in the new basis are

~ 1 ~
(AN, Ny = (0 D) DN O N ] + 5l + 1)535%[1\71...5%”51%"“] 39)
. .
+n(n+1)0a AWeN, 0N, 0N, , -

As an illustrative example lets work out the details of a three-form potential. The
components in the two bases are related by
Cabe = Cabc;
C,uab = Cabu - AZCabca
C;U/a = Ca/u/ - Azcabu - Agcaub + AZAZC/CabCy

a a 7b a Ab pc
Cuvp = Chp — 3AL Cypia + 342 ALCyy + AL AL A Cope.

(3.10)

pla

,10,



3.2 Internal diffeomorphisms
The transformation properties of the tensors T under infinitesimal coordinate transforma-

tions ¢y’ = y* — £%(x,y) are

p
6Ta1...apa1...ozq = grarTal...apal..,aq + Z aakérTal...r..,apal...aq- (3-11)
k=1

In abbreviated notation we set

C,ul...,un(m...ap_n) = C;ﬂ...unal...apfn (5177 y), (312)
and the infinitessimal change of C takes the form

(TL) (Cl...Cp_n)//

5C,U1---,Uln(b1---bp7n) = (t[l/ Cul---llln(cl---cpfn)uka ’ (313)

)(bl...bp_n)

with

(n) (ercp—n)” 1 scpnl L o
(ta, >(b1'-'bp—n) o 6[171 6 6(y Y >aa6(y Y )

bp—n]

+(=DP T (p—n)oferarz o By, 10(y—y)o(y—y").
(3.14)
So, for example, the infinitessimal change of the three-form is
6Cabe = §"0rCabe + 39(a€" Coelrs
6Caab = & 0rCaab + 2C0rv04 €, (3.15)

5Co¢,8a = grarcaﬂa + aafrcaﬁra
5Ca6'y = grarcaﬂ'ya

after a coordinate transformation with parameter {". Using eq. (2.38) this can be used to
define derivatives D,,, which transform covariantly under internal diffeomorphisms. We find

DaCabe = 0aCabe — ALiCabe — 3Caap0q AL,
DaCrab = 0aCuab — Aq0cCpab + 2C1c(a Oy Ags
DaCuva = OaCuva — AQOsCva — CrupOa Al
DaCuvp = 0aCpvp — AaOuCprup-

(3.16)

3.3 (Gauge transformations

The gauge invariance of the p-th rank antisymmetric tensor 0C' = dA with A being a
(p — 1)-form leads to invariances of the space-time effective action. So for example, if p = 3
we need to consider 3 different transformations, by parameters

A, Aaa, and Aag. (3.17)

— 11 —



To avoid cluttering the formulas we use the same symbol A for all transformations. The
different types of space-time transformations are specified by the index structure of A.
We find

0Cabe = 301a My,

Caab = Dalap + 20, Mg,

Capa = 2D[a Mgl + 0uhap — A TFhys,
6Capy = 3Djalgy) +3AuaTFsy),

(3.18)

We note that the components of A in eq. (3.17) are tensors in D dimensions. So the
components of A change according to eq. (3.11) after an internal diffeomorphism. Cor-
respondingly the components of A are in the representation (3.14). We have defined the
covariant derivatives of A accordingly

_ A a g5 N
'DHIA,U%“Hnbl-prfn - 8#1 AM2~-~Mnb1-~-bp7n - A/IzlaaAHI"lJ‘nblmbpfn

v " (3.19)
+ (p - n)(_l)p Auz...una[b1...bp_n_1abp_n}Aul'
We can write
5C#1~~-ﬂn(b1~~bp7n) = nD[l‘lA.U2-~/»Ln}(b1~~bpfn)
(c1cp—n—1) ~
(n) ,
+ (q )(blu.bpfn) s cpinerep 1)
n(n — 1) (n) (c1..Cp—ns1)” o
+ 2 (ha' )(bl...bp,n) [u1u2AH3-~~Hn](01~~~cp7n+1)”'

(3.20)

Comparing with eq. (3.18) we find

(Cl"‘cp—n—l)/
(n) — (_1\p1 B [c1 o Cp—n—1] oy
(q ) (b1-+bp—n) ( 1) (p ’rl) 5[b1 0 8{,{)7”](5(3/ Y )7 (3'21)

bp—n—l

and

o a Oy " %, ]

(h(n)> (Cl~~.Cp_’i’L+1) _ (_1)71, 5[015(32 . 5Cp—n+l]5(y o y/)é(y o y//)' (322)
(by++-bp—n)

We have written these expressions in a form that applies to a p-th rank antisymmetric
tensor with any number of space-time indices. So to compare with eq. (3.18) set p = 3 and
take n =0,...,3.

The components of F' = dC' expressed in the new basis are covariant under internal
diffeomorphisms in the sense that these transform according to eq. (3.11) and are invariant
under the gauge transformations of the antisymmetric tensor. For p = 3 we find the
corresponding field strengths

Fabed = 4014 Chedys

Frabe = DuCabe — 304Chejus

Fuvab = 2D(,Colab + 201aChjp + FC, Cabes (3.23)
Fuupa = 3D(uCupla — 0aCpup + 3501, Colabs

Fuvpe = 4®[MCVPU] + 69’&,,0/,0](1.

— 12 —



We note 0, = D, and moreover, covariant derivatives @a could have been used instead of
0, since the connections drop out when anti-symmetrizing. And in general

FNI”'MnJrl(bl“-bp—n) = (n + 1) ®[N1CH2"'#n+1](bl~--bp—n)

(n) (c1ep—n—1)’
B (q >(b1...bp_n) Cﬂl"'ﬂn+1(01...cp,n71)/

n(n+1) /. (@) (ercp-nt1)”
2 (ha’ )(bl...bp,n) aia©

13- pnt1](c1...cp—nt1)"

(3.24)

3.4 The kinetic and potential terms

Next we present the part of the effective space-time action arising from the kinetic term
of a p-th rank antisymmetric tensor in D dimensions. We first present our result for
eleven-dimensional supergravity, elaborating further the p = 3 example, and then we
present the result for general p. As an illustrative example we also choose the space-time
dimension d = 4.

The form action in eleven-dimensional supergravity is

1

S=-13 /d“x\/—G | F 2. (3.25)
K

The eleven-dimensional three-form C' gives rise to scalars Cype, vectors Cyp, and tensors

Couw and O,y in d dimensions. In the following we explain the choice of space-time fields

and we present the effective action. We find

S =S+ Sy + Sy, (3.26)

i.e. the action is the sum of the contribution from scalars, vectors and tensors.
First, there are space-time scalars C,p. which are three-forms on Y. The space-time

action is?

1

S5 = 2452

“ 2
/dv |:('Dp,cabc — 38[acbc]#)2 +4f (V[acbcd}) :| , (3.27)

where f was defined in eq. (2.42). The first bracket is the kinetic term for space-time
scalars Cup. which are charged under the non-abelian gauge group arising from internal
diffeomorphisms Aj; and the abelian gauge field Cgp,. The second term is a potential for
the scalars Cu. arising from the antisymmetric tensor and the scalars arising from the
internal metric gqp.

We note that the variation of the last term in Fogqp in eq. (3.23) under (3.18) does
not involve a space-time derivative. We therefore find it more convenient to define a new
gauge field tensor

Fpvab = 29[“(3,,}&}, + 28[acb]w,. (3.28)

*We are using another shorthand notation here. We use the notation (...)? whenever the indices are
contracted in an obvious way with h*" and/or ¢®°. Explicitly, given any quantity with some space-time and

some internal indices we identify (W, ap...)? With Wiy artr.. Wiavs...agby.. RFTFZRVIV2 [ ga1azghibz

g
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After this redefinition the gauge kinetic term is

1 _ 2
Sy = — o / dof " (Fuvas + F5Cabe) - (3.29)
Moreover, the action for tensors is
_ 1 -2 2, 1,3 2
St = —m d’U f (F/U/Pa) —+ Zf (F“ypo-) . (330)

In general, the space-time effective action arising from a rank p antisymmetric tensor
in D dimensions is again the sum of the contribution of scalars, vectors and tensors

S =S+ Sy + Si. (3.31)

Using as a starting point the D-dimensional action
S = /de\/—G | F 2, (3.32)

where F' = dC and C' is a p-form, we obtain®

1 2 y ’
Sy = H /dV [(D#Cal...zzp +p(_1)pa[alca2---ap]ﬂ) + (p + 1) (V[Q1Ca2~~~ap+1]) :|
1 b g
Sv = M/ W (Tivar-c-s + Ty sy (3:33)

1 22 pr1
2
St = Mk% < k )/dV(Fal...aka+1--~/‘p+l) ’
=0

Here using the same reasoning as before we defined the gauge field F,q,...,_, according to
Stuual...ap_l = 2®[ucy}a1...ap,1 + (p - 1)a[alcb2...bp,1],ul/' (334)

It is then easy enough to modify these concrete expressions to include overall scalar func-
tions or numerical coefficients in eq. (3.32).

3.5 Chern-Simons terms

Supergravity and string effective actions also include in general Chern-Simons terms. For
example, in eleven-dimensional supergravity

1

S = g2

/CAFAF (3.35)

Let us first dimensionally reduce this action to four space-time dimensions. The most
practical method is to expand the differential forms in the new basis. Given, for example,
a vector V' in D dimensions the relevant expansion is

V = Vndy" = (V, — A%V,)dz® + V,(dy® + A%dz®) = Vodz® + V,Dy®. (3.36)

3Here we work with the metric reduction (2.6), without the warp factor f needed to obtain canonical
Einstein-Hilbert terms. If we wanted to include these extra factors, as we did in the M-theory example
above, then the measure factors dV (defined in (2.14)) would need to be modified in a straight-forward way.

— 14 —



Applying this expansion to each index independently organizes the Chern-Simons term into

55

Ses = g

/ dztP7 dy 4TI, FabeaCefqls (3.37)
where dx*" = dx* A dx¥ N .... The components of F' in the new basis can be found in
eq. (3.23) and the anti-symmetrization is done over all indices, external and internal. Here
we have used

AP Dyhededs — gqhvoe qyobedefs, (3.38)

For generic supergravity theories the Chern-Simons terms are contributions to the
action, which depend on some p-form potential C, yet are gauge invariant. This poten-
tial can, for example, be a RR, NS-NS potential or the three-form of eleven-dimensional
supergravity. Schematically the Chern-Simons terms take the form

See ~ / CAQ, (3.39)

where €2 is a closed form constructed from field strengths. For eleven-dimensional super-
gravity 0 = ' A F, for example. Even though the concrete expressions depend on the
D-dimensional theory that is being reduced and the space-time dimension d, the method
described above applies in general. Since using this method it is straightforward to work
out the contribution to the space-time effective action but the results are case dependent
we only present concrete results for the eleven to four reduction discussed above.

3.6 Stiickelberg mechanism

Typically, one would like to understand how to fix as much of our gauge freedom as possible
and determine the physical spectrum, especially the space of massless fields. In this section
we only need to work to linearized order in the transformations and field strengths. Let’s
start by considering the case (D, d,p) = (11,4,3). The variations are given in (3.18) and
the field strengths in (3.23). Take the space-time coordinate = to be arbitrary but fixed.
According to Hodge’s theorem the three-form Cj. can be decomposed into harmonic, exact
and co-exact pieces, and we can use the gauge freedom from A, to gauge away the exact
piece. Once this is done, the kinetic terms Fiabc for the exact three-forms become mass
terms for the vectors C,,, which are non-closed two-forms on the internal space. This is
the usual Stiickelberg mechanism in which the non-closed two-form C,q, becomes massive
after “eating” the exact piece of Cype. In the same way a non-closed one-form C,,,,, becomes
massive after “eating” the exact piece of Cqp, (equivalently the exact pieces of C can always
be gauged away). The potential in eq. (3.27) gives a mass to any non-closed scalars arising
from the three-form. Thus at each level harmonic forms are all that remain as massless
fields in four-dimensions; the remaining fields can either be gauged away or become massive.

More generally, we have the terms with coefficients ¢(™ in eq. (3.20). Each ¢ is a
linear operator from the space of fields that are (n 4 1)-forms in the d-dimensional space-
time to the space of fields which are space-time n-forms. In our case these are the spaces
of (p — n — 1)-forms and (p — n)-forms, respectively, on the internal manifold, and ¢ is
simply the usual exterior derivative. As before, we can gauge away each field in the image
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of ¢, i.e. each exact form, and each field that is not in the kernel of ¢(™, i.e. non-closed
forms, gets a mass via the Stiickelberg mechanism.

The remaining massless fields lie in the space of closed forms modulo exact forms,
i.e. in the de Rham cohomology groups HP~". For a compact manifold Y, although the
space of (p — n)-forms is infinite dimensional, the HP~"(Y") are finite dimensional, so we
see that there are always a finite number of massless fields coming from the reduction of
the D-dimensional p-forms.

4 Summary

As a summary we present a concrete example. The space-time effective action for eleven-
dimensional supergravity compactified to four dimensions is

1

1
S=-25 dvh®? <2g“bg“l - g“gbd> DagabDpged

1 1
+ 57 dv (hﬁuhv[/}ha]v _ 2h0¢uhﬁ[l/hﬂp> Dahpy Dy,

1 - A 1 . -
+ 13 / dvf [gabha[ﬂhﬂlvvahawbhw — ho? <29‘“’gcd + g“cgbd> VahasViged

2

1 9 - 2
— 24/%2/dv |:(®#Cabc — 38[acbc}u) + 4f (V[acbcd]> :|

1 N N 1 _ 2
+ (gptgqugrs _ 7gp8gqtgru + gpr'gqugst) Vrgpqvugst] — 8/€2/de 1 (?ZV)

L -1 c 2 1 —2 2, 7P 2
o [ 8 4 T = iz [ |57 Epn® + T B

55 v po aocae
- 283352 /dxu P dy bed ng[,ul/pO'Fabchefg}- (41)

This is the action for the bosonic fields in all representations of the four-dimensional
Lorentz-group and all masses. The components of F' in the new basis are summarized
in eq. (3.23). Given the expressions we presented it is easy to write then down the space-
time effective action for any values of (D, d, p).
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