58 research outputs found

    The substrate of the biopsychosocial influences in the carcinogenesis of the digestive tract

    Get PDF
    Digestive cancer represents a severe public health problem, being one of the main causes of death. It is considered a multifactorial disease, with hereditary predisposition, environmental factors, and other factors involved in carcinogenesis. Both the evolution and the pathogenesis of digestive neoplasms remain incompletely elucidated. As a multifactorial disease, it can be approached by taking into account the biopsychosocial influences via enteric nervous system. Many peptides and non-peptides having a neurotransmitter role can be found in the enteric nervous system, which can influence the neoplastic process directly or indirectly by affecting some angiogenic, growth, and metastasis factors. However, neurotransmitters can also cause directly, through intercellular signalizing, the angiogenesis, the proliferation, and the digestive neoplasms’ metastasis. This new approach to neoplasms of the digestive tube assumes broader psychosocial factors can play an important role in the understanding the ethiopathogenie, the evolution of the disease, and determination of possible molecular targeted therapies; it also suggests that behavioral strategies may be important for maintaining a healthy state with respect to the digestive tract

    Long-term treatment with chloroquine increases lifespan in middle-aged male mice possibly via autophagy modulation, proteasome inhibition and glycogen metabolism

    Get PDF
    Previous studies have shown that the polyamine spermidine increased the maximum life span in C. elegans and the median life span in mice. Since spermidine increases autophagy, we asked if treatment with chloroquine, an inhibitor of autophagy, would shorten the lifespan of mice. Recently, chloroquine has intensively been discussed as a treatment option for COVID-19 patients. To rule out unfavorable long-term effects on longevity, we examined the effect of chronic treatment with chloroquine given in the drinking water on the lifespan and organ pathology of male middle-aged NMRI mice. We report that, surprisingly, daily treatment with chloroquine extended the median life span by 11.4% and the maximum life span of the middle-aged male NMRI mice by 11.8%. Subsequent experiments show that the chloroquine-induced lifespan elevation is associated with dose-dependent increase in LC3B-II, a marker of autophagosomes, in the liver and heart that was confirmed by transmission electron microscopy. Quite intriguingly, chloroquine treatment was also associated with a decrease in glycogenolysis in the liver suggesting a compensatory mechanism to provide energy to the cell. Accumulation of autophagosomes was paralleled by an inhibition of proteasome-dependent proteolysis in the liver and the heart as well as with decreased serum levels of insulin growth factor binding protein-3 (IGFBP3), a protein associated with longevity. We propose that inhibition of proteasome activity in conjunction with an increased number of autophagosomes and decreased levels of IGFBP3 might play a central role in lifespan extension by chloroquine in male NMRI mice.UEFISCDI (EU Horizon 2020 Research and Innovation Programme), Consiliul National al Cercetarii Stiintifice (CNCS), Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI

    Monomeric C-Reactive Protein Aggravates Secondary Degeneration after Intracerebral Haemorrhagic Stroke and May Function as a Sensor for Systemic Inflammation.

    Get PDF
    BACKGROUND:We previously identified increased tissue localization of monomeric C-reactive protein (mCRP) in the infarcted cortical brain tissue of patients following ischaemic stroke. Here, we investigated the relationship of mCRP expression in haemorrhagic stroke, and additionally examined the capacity of mCRP to travel to or appear at other locations within the brain that might account for later chronic neuroinflammatory or neurodegenerative effects. METHODS:Immunohistochemistry was performed on Formalin-fixed, paraffin-embedded archived brain tissue blocks obtained at autopsy from stroke patients and age-matched controls. We modelled mCRP migration into the brain after haemorrhagic stroke by infusing mCRP (3.5 µg) into the hippocampus of mice and localized mCRP with histological and immunohistochemistry methods. RESULTS:On human tissue in the early stages of haemorrhage, there was no staining of mCRP. However, with increasing post-stroke survival time, mCRP immunostaining was associated with some parenchymal brain cells, some stroke-affected neurons in the surrounding areas and the lumen of large blood vessels as well as brain capillaries. Further from the peri-haematoma region, however, mCRP was detected in the lumen of micro-vessels expressing aquaporin 4 (AQP4). In the hypothalamus, we detected clusters of neurons loaded with mCRP along with scattered lipofuscin-like deposits. In the peri-haematoma region of patients, mCRP was abundantly seen adjacent to AQP4 immunoreactivity. When we stereotactically injected mCRP into the hippocampus of mice, we also observed strong expression in distant neurones of the hypothalamus as well as cortical capillaries. CONCLUSIONS:mCRP is abundantly expressed in the brain after haemorrhagic stroke, directly impacting the pathophysiological development of the haematoma. In addition, it may have indirect effects, where the microcirculatory system appears to be able to carry it throughout the cortex as far as the hypothalamus, allowing for long-distance effects and damage through its capacity to induce inflammation and degenerate neuronal perivascular compartments

    Antibody Elution Method for Multiple Immunohistochemistry on Primary Antibodies Raised in the Same Species and of the Same Subtype

    No full text
    Double or multiple antigen labeling in IHC classically relies on the existence of primary antibodies raised in different species or of different IgG isotypes to ensure the specific labeling with the secondary detection systems. However, suitable pairs of primary antibodies are not always available or the best choice (e.g., as diagnostic tools). During the last few years, several methods have been proposed to overcome this, but none of them offers the flexibility needed for reliable double or multiple enzymatic or fluorescent IHC. We present here a procedure that elutes the antibodies after a first round of immunolabeling, which, in combination with precipitation-based detection systems, allows multiple IHC rounds even for primary antibodies raised in the same species and IgG isotype. Compared with other proposed methods, this procedure ensures a reliable enzymatic or fluorescent staining without cross-reactivity and without loss of tissue antigenicity, thus offering a flexible tool for colocalization studies and pathological diagnosis. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 57:567–575, 2009

    Detection of diffuse axonal injury in forensic pathology

    No full text
    Abstract: Even if βAPP remains the gold standard in identifying diffuse axonal injuries, other histological, ultrastructure, histochemical, or immunohistochemical markers may aid the diagnosis and may better characterize this traumatic brain pathology. Moreover, associated changes, including neuronal body changes, the presence of microglial clusters, and so on, when identified in a traumatic context, should suggest at least the need of using specific markers for identification of DAIs. The purpose of this article is to present the main microscopy techniques used in forensic practice to detect diffuse axonal injury
    • …
    corecore