59 research outputs found

    Kinetics of Proton Transport into Influenza Virions by the Viral M2 Channel

    Get PDF
    M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pKm of ∼4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer

    Undertaking multi-centre randomised controlled trials in primary care: learnings and recommendations from the PULsE-AI trial researchers

    Get PDF
    Background Conducting effective and translational research can be challenging and few trials undertake formal reflection exercises and disseminate learnings from them. Following completion of our multicentre randomised controlled trial, which was impacted by the COVID-19 pandemic, we sought to reflect on our experiences and share our thoughts on challenges, lessons learned, and recommendations for researchers undertaking or considering research in primary care. Methods Researchers involved in the Prediction of Undiagnosed atriaL fibrillation using a machinE learning AlgorIthm (PULsE-AI) trial, conducted in England from June 2019 to February 2021 were invited to participate in a qualitative reflection exercise. Members of the Trial Steering Committee (TSC) were invited to attend a semi-structured focus group session, Principal Investigators and their research teams at practices involved in the trial were invited to participate in a semi-structured interview. Following transcription, reflexive thematic analysis was undertaken based on pre-specified themes of recruitment, challenges, lessons learned, and recommendations that formed the structure of the focus group/interview sessions, whilst also allowing the exploration of new themes that emerged from the data. Results Eight of 14 members of the TSC, and one of six practices involved in the trial participated in the reflection exercise. Recruitment was highlighted as a major challenge encountered by trial researchers, even prior to disruption due to the COVID-19 pandemic. Researchers also commented on themes such as the need to consider incentivisation, and challenges associated with using technology in trials, especially in older age groups. Conclusions Undertaking a formal reflection exercise following the completion of the PULsE-AI trial enabled us to review experiences encountered whilst undertaking a prospective randomised trial in primary care. In sharing our learnings, we hope to support other clinicians undertaking research in primary care to ensure that future trials are of optimal value for furthering knowledge, streamlining pathways, and benefitting patients

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112

    Get PDF
    Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112 for proteasome-mediated degradation by 48 h post-infection, thus removing both activating ligands for DNAM-1 from the cell surface during productive infection. Significantly, cell surface expression of both CD112 and CD155 was restored when UL141 was deleted from the HCMV genome. While gpUL141 alone is sufficient to mediate retention of CD155 in the endoplasmic reticulum, UL141 requires assistance from additional HCMV-encoded functions to suppress expression of CD112

    Direct intra-abdominal pressure monitoring via piezoresistive pressure measurement: a technical note

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Piezoresistive pressure measurement technique (PRM) has previously been applied for direct IAP measurement in a porcine model using two different devices. Aim of this clinical study was to assess both devices regarding complications, reliability and agreement with IVP in patients undergoing elective abdominal surgery.</p> <p>Methods</p> <p>A prospective cohort study was performed in 20 patients randomly scheduled to receive PRM either by a Coach<sup>®</sup>-probe or an Accurate++<sup>®</sup>-probe (both MIPM, Mammendorf, Germany). Probes were placed on the greater omentum and passed through the abdominal wall paralleling routine drainages. PRM was compared with IVP measurement by t-testing and by calculating mean difference as well as limits of agreement (LA).</p> <p>Results</p> <p>There were no probe related complications. Due to technical limitations, data could be collected in 3/10 patients with Coach<sup>® </sup>and in 7/10 patients with Accurate++<sup>®</sup>. Analysis was carried out only for Accurate++<sup>®</sup>. Mean values did not differ to mean IVP values. Mean difference to IVP was 0.1 ± 2.8 mmHg (LA: -5.5 to 5.6 mmHg).</p> <p>Conclusion</p> <p>Direct IAP measurement was clinically uneventful. Although results of Accurate++<sup>® </sup>were comparable to IVP, the device might be too fragile for IAP measurements in the clinical setting. Local ethical committee trial registration: EK2024</p

    A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research

    Get PDF
    The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science

    Identification of undiagnosed atrial fibrillation patients using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI): Study protocol for a randomised controlled trial

    Get PDF
    Atrial fibrillation (AF) is associated with an increased risk of stroke, enhanced stroke severity, and other comorbidities. However, AF is often asymptomatic, and frequently remains undiagnosed until complications occur. Current screening approaches for AF lack either cost-effectiveness or diagnostic sensitivity; thus, there is interest in tools that could be used for population screening. An AF risk prediction algorithm, developed using machine learning from a UK dataset of 2,994,837 patients, was found to be more effective than existing models at identifying patients at risk of AF. Therefore, the aim of the trial is to assess the effectiveness of this risk prediction algorithm combined with diagnostic testing for the identification of AF in a real-world primary care setting. Eligible participants (aged =30?years and without an existing AF diagnosis) registered at participating UK general practices will be randomised into intervention and control arms. Intervention arm participants identified at highest risk of developing AF (algorithm risk score?=?7.4%) will be invited for a 12-lead electrocardiogram (ECG) followed by two-weeks of home-based ECG monitoring with a KardiaMobile device. Control arm participants will be used for comparison and will be managed routinely. The primary outcome is the number of AF diagnoses in the intervention arm compared with the control arm during the research window. If the trial is successful, there is potential for the risk prediction algorithm to be implemented throughout primary care for narrowing the population considered at highest risk for AF who could benefit from more intensive screening for AF. Trial Registration: NCT04045639

    Undertaking multi-centre randomised controlled trials in primary care: learnings and recommendations from the PULsE-AI trial researchers

    Get PDF
    Background: Conducting effective and translational research can be challenging and few trials undertake formal reflection exercises and disseminate learnings from them. Following completion of our multicentre randomised controlled trial, which was impacted by the COVID-19 pandemic, we sought to reflect on our experiences and share our thoughts on challenges, lessons learned, and recommendations for researchers undertaking or considering research in primary care. Methods: Researchers involved in the Prediction of Undiagnosed atriaL fibrillation using a machinE learning AlgorIthm (PULsE-AI) trial, conducted in England from June 2019 to February 2021 were invited to participate in a qualitative reflection exercise. Members of the Trial Steering Committee (TSC) were invited to attend a semi-structured focus group session, Principal Investigators and their research teams at practices involved in the trial were invited to participate in a semi-structured interview. Following transcription, reflexive thematic analysis was undertaken based on pre-specified themes of recruitment, challenges, lessons learned, and recommendations that formed the structure of the focus group/interview sessions, whilst also allowing the exploration of new themes that emerged from the data. Results: Eight of 14 members of the TSC, and one of six practices involved in the trial participated in the reflection exercise. Recruitment was highlighted as a major challenge encountered by trial researchers, even prior to disruption due to the COVID-19 pandemic. Researchers also commented on themes such as the need to consider incentivisation, and challenges associated with using technology in trials, especially in older age groups. Conclusions: Undertaking a formal reflection exercise following the completion of the PULsE-AI trial enabled us to review experiences encountered whilst undertaking a prospective randomised trial in primary care. In sharing our learnings, we hope to support other clinicians undertaking research in primary care to ensure that future trials are of optimal value for furthering knowledge, streamlining pathways, and benefitting patients

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response
    • …
    corecore