189 research outputs found

    Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf

    Get PDF
    Following the discovery of the T8 subdwarf WISEJ200520.38+542433.9 (Wolf 1130C), with common proper motion to a binary (Wolf 1130AB) consisting of an M subdwarf and a white dwarf, we set out to learn more about the old binary in the system. We find that the A and B components of Wolf 1130 are tidally locked, which is revealed by the coherence of more than a year of V band photometry phase folded to the derived orbital period of 0.4967 days. Forty new high-resolution, near-infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) provide radial velocities and a projected rotational velocity (v sin i) of 14.7 +/- 0.7 km/s for the M subdwarf. In tandem with a Gaia parallax-derived radius and verified tidal-locking, we calculate an inclination of i=29 +/- 2 degrees. From the single-lined orbital solution and the inclination we derive an absolute mass for the unseen primary (1.24+0.19-0.15 Msun). Its non-detection between 0.2 and 2.5 microns implies that it is an old (>3.7 Gyr) and cool (Teff<7000K) ONe white dwarf. This is the first ultramassive white dwarf within 25pc. The evolution of Wolf 1130AB into a cataclysmic variable is inevitable, making it a potential Type Ia supernova progenitor. The formation of a triple system with a primary mass >100 times the tertiary mass and the survival of the system through the common-envelope phase, where ~80% of the system mass was lost, is remarkable. Our analysis of Wolf 1130 allows us to infer its formation and evolutionary history, which has unique implications for understanding low-mass star and brown dwarf formation around intermediate mass stars.Comment: 37 pages, 9 Figures, 5 Table

    A Candidate Young Massive Planet in Orbit around the Classical T Tauri Star CI Tau

    Get PDF
    The ~2 Myr old classical T Tauri star CI Tau shows periodic variability in its radial velocity (RV) variations measured at infrared (IR) and optical wavelengths. We find that these observations are consistent with a massive planet in a ~9-day period orbit. These results are based on 71 IR RV measurements of this system obtained over 5 years, and on 26 optical RV measurements obtained over 9 years. CI Tau was also observed photometrically in the optical on 34 nights over ~one month in 2012. The optical RV data alone are inadequate to identify an orbital period, likely the result of star spot and activity induced noise for this relatively small dataset. The infrared RV measurements reveal significant periodicity at ~9 days. In addition, the full set of optical and IR RV measurements taken together phase coherently and with equal amplitudes to the ~9 day period. Periodic radial velocity signals can in principle be produced by cool spots, hot spots, and reflection of the stellar spectrum off the inner disk, in addition to resulting from a planetary companion. We have considered each of these and find the planet hypothesis most consistent with the data. The radial velocity amplitude yields an Msin(i) of ~8.1 M_Jup; in conjunction with a 1.3 mm continuum emission measurement of the circumstellar disk inclination from the literature, we find a planet mass of ~11.3 M_Jup, assuming alignment of the planetary orbit with the disk.Comment: 61 pages, 13 figures, accepted for publication in The Astrophysical Journa

    Zodiacal Exoplanets In Time (ZEIT) I: A Neptune-sized planet orbiting an M4.5 dwarf in the Hyades Star Cluster

    Get PDF
    Studying the properties of young planetary systems can shed light on how the dynamics and structure of planets evolve during their most formative years. Recent K2 observations of nearby young clusters (10–800 Myr) have facilitated the discovery of such planetary systems. Here we report the discovery of a Neptune-sized planet transiting an M4.5 dwarf (K2-25) in the Hyades cluster (650–800 Myr). The light curve shows a strong periodic signal at 1.88 days, which we attribute to spot coverage and rotation. We confirm that the planet host is a member of the Hyades by measuring the radial velocity of the system with the high-resolution near-infrared spectrograph Immersion Grating Infrared Spectrometer. This enables us to calculate a distance based on K2-25's kinematics and membership to the Hyades, which in turn provides a stellar radius and mass to ≃ 5%–10%, better than what is currently possible for most Kepler M dwarfs (12%–20%). We use the derived stellar density as a prior on fitting the K2 transit photometry, which provides weak constraints on eccentricity. Utilizing a combination of adaptive optics imaging and high-resolution spectra, we rule out the possibility that the signal is due to a bound or background eclipsing binary, confirming the transits' planetary origin. K2-25b has a radius (3.43}_(-0.31)^(+0.95)R_⊕) much larger than older Kepler planets with similar orbital periods (3.485 days) and host-star masses (0.29 M_⊙). This suggests that close-in planets lose some of their atmospheres past the first few hundred million years. Additional transiting planets around the Hyades, Pleiades, and Praesepe clusters from K2 will help confirm whether this planet is atypical or representative of other close-in planets of similar age

    Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission

    Get PDF
    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds

    The AllWISE Motion Survey, Part 2

    Get PDF
    We use the AllWISE Data Release to continue our search for WISE-detected motions. In this paper, we publish another 27,846 motion objects, bringing the total number to 48,000 when objects found during our original AllWISE motion survey are included. We use this list, along with the lists of confirmed WISE-based motion objects from the recent papers by Luhman and by Schneider et al. and candidate motion objects from the recent paper by Gagne et al. to search for widely separated, common-proper-motion systems. We identify 1,039 such candidate systems. All 48,000 objects are further analyzed using color-color and color-mag plots to provide possible characterizations prior to spectroscopic follow-up. We present spectra of 172 of these, supplemented with new spectra of 23 comparison objects from the literature, and provide classifications and physical interpretations of interesting sources. Highlights include: (1) the identification of three G/K dwarfs that can be used as standard candles to study clumpiness and grain size in nearby molecular clouds because these objects are currently moving behind the clouds, (2) the confirmation/discovery of several M, L, and T dwarfs and one white dwarf whose spectrophotometric distance estimates place them 5-20 pc from the Sun, (3) the suggestion that the Na 'D' line be used as a diagnostic tool for interpreting and classifying metal-poor late-M and L dwarfs, (4) the recognition of a triple system including a carbon dwarf and late-M subdwarf, for which model fits of the late-M subdwarf (giving [Fe/H] ~ -1.0) provide a measured metallicity for the carbon star, and (5) a possible 24-pc-distant K5 dwarf + peculiar red L5 system with an apparent physical separation of 0.1 pc.Comment: 62 pages with 80 figures, accepted for publication in The Astrophysical Journal Supplement Series, 23 Mar 2016; second version fixes a few small typos and corrects the footnotes for Table

    The IGRINS YSO Survey III: Stellar parameters of pre-main sequence stars in Ophiuchus and Upper Scorpius

    Full text link
    We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specific K-band spectral regions and determine the photospheric temperature (TeffT_{\rm eff}), surface gravity (log\log g), magnetic field strength (B), projected rotational velocity (vsiniv \sin i), and K-band veiling (rKr_{\rm K}). We determined B for \sim46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae Association (TWA) presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from 2MASS and WISE photometry between 2 and 24~μ\mum. We found that Class II YSOs typically have lower log\log g and vsiniv\sin i, similar B, and higher K-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO Survey. Considering log\log g as a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.Comment: 21 pages, 8 figures, 4 tables. Accepted for publication in Ap

    Global status of groundfish stocks

    Get PDF
    We review the status of groundfish stocks using published scientific assessments for 349 individual stocks constituting 90% of global groundfish catch. Overall, average stock abundance is increasing and is currently above the level that would produce maximum sustainable yield (MSY). Fishing pressure for cod-like fishes (Gadiformes) and flatfishes (Pleuronectiformes) was, for several decades, on average well above levels associated with MSY, but is now at or below the level expected to produce MSY. In contrast, fishing pressure for rockfishes (Scorpaeniformes) decreased from near MSY-related levels in the mid-1990s, and since the mid-2000s has remained on average at only one third of MSY-related levels. Regions with the most depressed groundfish stocks are the Northwest Atlantic and the Pacific coast of South America, while stocks from the Northeast and Eastern Central Pacific, Northeast Atlantic, Southeast Atlantic and Southwest Pacific tend to have greatest average abundance relative to MSY-based reference points. In the most recent year available for each stock, the catch was only 61% of MSY. Equilibrium yield curves indicate that 76% of global potential groundfish yield could be achieved using current estimates of fishing pressure. 15% of this is lost by excess fishing pressure, 67% results from lower than optimal fishing pressure on healthy stocks and 18% is lost from stocks currently overfished but rebuilding. Thus, there is modest opportunity to increase catch of global groundfish fisheries by reducing overfishing on some stocks, but more by increasing harvest on others. However, there may be other reasons not to fully exploit these stocks.Fil: Hilborn, Ray. University of Washington; Estados UnidosFil: Hively, Daniel J.. University of Washington; Estados UnidosFil: Baker Loke, Nicole. University of Washington; Estados UnidosFil: de Moor, Carryn L.. University Of Cape Town; SudáfricaFil: Kurota, Hiroyuki. Japan Fisheries Research and Education Agency; JapónFil: Kathena, Johannes N.. Ministry of Fisheries and Marine Resources; NamibiaFil: Mace, Pamela M.. Ministry for Primary Industries; Nueva ZelandaFil: Minto, Cóilín. Galway-Mayo Institute of Technology; IrlandaFil: Parma, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Quiroz, Juan-Carlos. Instituto de Fomento Pesquero; ChileFil: Melnychuk, Michael C.. University of Washington; Estados Unido
    corecore