1,296 research outputs found
Interferometric differentiation between resonant Coherent Anti-Stokes Raman Scattering and nonresonant four-wave-mixing processes
A major impediment of using Coherent Anti-Stokes Raman Scattering to identify
biological molecules is that the illumination levels required to produce a
measurable signal often also produce significant nonresonant background from
the medium, especially from water, that is not specific to the resonance being
investigated. We present a method of using nonlinear interferometry to measure
the temporal shape of the anti-Stokes signal to differentiate which components
are resonant and nonresonant. This method is easily adaptable to most existing
pulsed CARS illumination methods and should allow for distinguishing resonant
CARS when using higher energy pulses. By examining the differences between
signals produced by acetone and water, we show that the resonant and
nonresonant signals can be clearly differentiated.Comment: 8 pages, 4 figure
From Caution to College: The Effects on Veterans with Self- Reported Trauma Symptoms Sharing their Experiences with the Campus Community
Over 900,000 veterans are using benefits for higher education today; the vast majority of them served in the Global War on Terrorism (GWOT). Over 25% of GWOT service members that have been treated by the Veterans Affairs (VA) are reported to have symptoms of posttraumatic stress or posttraumatic stress disorder (PTS/PTSD). PTS/PTSD negatively impacts student veterans’ abilities to navigate stressful environments such as college and university settings. The Veterans Embracing Transition (VET) Connect Program at San José State University (SJSU) is designed to connect veterans with non-veterans as peer educators. Five of the 13 VET Connect peer educators (38.5%) who were interviewed reported having symptoms of PTSD. Through their service as peer educators on and off campus, these participants demonstrated signs of healthy coping effects through sharing experiences and educating non-veterans of the struggles related to military culture, service, combat, and loss. This study was conducted in collaboration with Sophia Alcala. We worked on independent research questions and observations using data derived from the same larger study simultaneously under the supervision of Dr. Klaw
Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering
A method of examining a sample comprises exposing the sample to a pump pulse of electromagnetic radiation for a first period of time, exposing the sample to a stimulant pulse of electromagnetic radiation for a second period of time which overlaps in time with at least a portion of the first exposing, to produce a signal pulse of electromagnetic radiation for a third period of time, and interfering the signal pulse with a reference pulse of electromagnetic radiation, to determine which portions of the signal pulse were produced during the exposing of the sample to the stimulant pulse. The first and third periods of time are each greater than the second period of time
Clinical Notes: 201Tl Chloride Uptake by Non-Hodgkins Lymphoma: Radiographic Exhibit
This report describes intense uptake of 201Tl in a patient with histiocytic lymphoma. The activity seen was greater than with 67Ga. Use of 201Tl as an alternative imaging agent is advocated
Nonlinear interferometric vibrational imaging
A method of examining a sample, which includes: exposing a reference to a first set of electromagnetic radiation, to form a second set of electromagnetic radiation scattered from the reference; exposing a sample to a third set of electromagnetic radiation to form a fourth set of electromagnetic radiation scattered from the sample; and interfering the second set of electromagnetic radiation and the fourth set of electromagnetic radiation. The first set and the third set of electromagnetic radiation are generated from a source; at least a portion of the second set of electromagnetic radiation is of a frequency different from that of the first set of electromagnetic radiation; and at least a portion of the fourth set of electromagnetic radiation is of a frequency different from that of the third set of electromagnetic radiation
Computational polarimetric microwave imaging
We propose a polarimetric microwave imaging technique that exploits recent
advances in computational imaging. We utilize a frequency-diverse cavity-backed
metasurface, allowing us to demonstrate high-resolution polarimetric imaging
using a single transceiver and frequency sweep over the operational microwave
bandwidth. The frequency-diverse metasurface imager greatly simplifies the
system architecture compared with active arrays and other conventional
microwave imaging approaches. We further develop the theoretical framework for
computational polarimetric imaging and validate the approach experimentally
using a multi-modal leaky cavity. The scalar approximation for the interaction
between the radiated waves and the target---often applied in microwave
computational imaging schemes---is thus extended to retrieve the susceptibility
tensors, and hence providing additional information about the targets.
Computational polarimetry has relevance for existing systems in the field that
extract polarimetric imagery, and particular for ground observation. A growing
number of short-range microwave imaging applications can also notably benefit
from computational polarimetry, particularly for imaging objects that are
difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure
RHEBI Expression in Embryonic and Postnatal Mouse
Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expres- sion pattern of RHEB1 was analyzed in both embryonic (at E3.5–E16.5) and adult (1-month old) mice. RHEB1 immu- nostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These inde- pendent methods revealed similar RHEB1 expression pat- terns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expres- sion was seen in preimplantation embryos at E3.5 and post- implantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tis- sues, including the neuroepithelial layer of the mesenceph- alon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, sub- cortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary blad- der, and muscle. Moreover, adult animals have complex tis- sue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal develop- ment. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development
RHEB1 Expression in Embryonic and Postnatal Mouse
Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expres-sion pattern of RHEB1 was analyzed in both embryonic (at E3.5–E16.5) and adult (1-month old) mice. RHEB1 immu-nostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These inde-pendent methods revealed similar RHEB1 expression pat-terns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expres-sion was seen in preimplantation embryos at E3.5 and post-implantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tis-sues, including the neuroepithelial layer of the mesenceph-alon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, sub-cortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary blad-der, and muscle. Moreover, adult animals have complex tis-sue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal develop-ment. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development
Coded apertures for x-ray scatter imaging
We examine coding strategies for coded aperture scatter imagers. Scatter imaging enables tomography of compact regions from snapshot measurements. We present coded aperture designs for pencil and fan beam geometries, and compare their singular value spectra with that of the Radon transform and selected volume tomography.We show that under dose constraints scatter imaging improves conditioning over alternative techniques, and that specially designed coded apertures enable snapshot 1D and 2
- …